Siti Alfiatur Rohmaniah, Novita Eka Chandra


The price of life insurance premiums for each person depends on the probability of death, not only based on age and gender as offered by an Indonesian insurance company.  The purpose of this study is to determine premium prices on underwriting factors and frailty factors using Generalized Linear Mixed Models (GLMM). GLMM is used for modeling a combination of fixed effect heterogeneity (underwriting factors) and random effects (frailty factors) between individuals. The data used longitudinal data about underwriting factors that have Binomial distribution are taken from the Health and Retirement Study and processed using R software. Because the data used by survey data within an interval of two years, so the probability of death is obtained for an interval the next two years. Underwriting factors that have a significant effect on the probability of death are age, alcoholic status, heart disease, and diabetes. As a result, is obtained the probability of death models each individual to determine life insurance premium prices. The premium price of each individual is different because depends on underwriting factors and frailty. If frailty is positive, it means that a person level of vulnerability when experiencing the risk of death is greater than negative frailty.


frailty; generalized linear mixed model; underwriting

Full Text:



Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A. dan Nesbitt, C.J. 1997. Actuarial Mathematics 2nd Edition. Itasca. Illinois. The Society of Actuaries.

Brown, R. L., & McDaid, J. 2003. Factors affecting retirement mortality. North American Actuarial Journal, 7(2), 24–43.

Danardono. 2015. Analisis Data Longitudinal. Yogyakarta. Gadjah Mada University Press.

Dobson, A. J. 2002. An Introduction to Generalized Linear Models 2nd Edition. New York. Chapman & Hall/CRC.

Effendie, Adhitya Ronnie. 2015. Matematika Aktuaria dengan Software R. Yogyakarta. Gadjah Mada University Press.

Gałecki, A., & Burzykowski, T. 2013. Linear mixed-effects models using R: A step-by-step approach. Springer Science & Business Media.

Manton, K. G., Stallard, E., Vaupel, J. W. 1986. Alternative Models for the Heterogeneity of Mortality Risks Among the Aged. Journal of the American Statistical Association, 81, 635-644.

McCullagh, P., & Nelder, J. A. 1989. Generalized linear models (Vol. 37). CRC press.

McDaid, J., Brown, R. L. 2003. Factors Affecting Retirement Mortality. North American Actuarial Journal, 7, 24-43.

Rohmaniah, S. A. 2015. Pemodelan Mortalita dengan Faktor Underwriting dan Frailty menggunakan Generalized Linear Mixed Models dan Aplikasinya dalam Menentukan Harga Premi. Yogyakarta: [Yogyakarta]: Universitas Gadjah Mada. Retrieved from⊂=PenelitianDetail&act=view&typ=html&buku_id=77326

Rohmaniah, S. A., Chandra, N.E. 2018. Pengaruh Frailty dalam Pemodelan Mortalita: Prosiding Seminar Nasional Matematika dan Pendidikan Matematika, Diselenggarakan oleh Program Studi Magister Pendidikan Matematika FKIP UNS, 4 Agustus 2018. Surakarta

Rohmaniah, S. A., Danardono. 2017. Perhitungan harga premi model dua tahunan dengan faktor underwriting menggunakan generalized linear models: Prosiding Seminar Nasional Matematika dan Pendidikan Matematika, Diselenggarakan oleh Program Studi Pendidikan Matematika, UMS, 18 Maret 2017 (hal. 124-132). Surakarta: Muhammadiyah University Press. Diakses dari

Su, S., Sherris, M. 2012. Heterogeneity of Australian Population Mortality and Implications for a Viable Life Annuity Market. Insurance: Mathematics and Economics, 51, 322-332.



  • There are currently no refbacks.

Visitor Statistics View My Stats

Barcode ISSN Jurnal JITEK:

p-ISSN                               e-ISSN


JITEK telah terindeks pada:


Creative Commons License

JITek: Jurnal Ilmiah Teknosains is licensed under a Creative Commons Attribution 4.0 International Licensep-ISSN (Print) 2460-9986 | e-ISSN (Online) 2476-9436.

Based on a work at