Model Average-Based Fuzzy Time Series untuk Prediksi Perkembangan Kasus Terkonfirmasi Positif COVID-19

Endro Dwi Wuryanto, Nella Valen Ika Puspita

Abstract


The number of positive confirmed COVID-19 cases in Indonesia continues to rise on a daily basis. A prediction model is required to examine and measure the current progression of positive verified COVID-19 instances and to anticipate these circumstances in the future. The goal of this research is to create a prediction application that uses a fuzzy time series approach as a prediction method and an average-based length algorithm as an interval length determinant. The effective interval length can have a greater impact on the prediction outcomes. The data for this study came from the COVID-19 task force's website, and it tracked the progression of positive confirmed COVID-19 cases from November 2020 to July 2021. The Mean Absolute Percentage Error (MAPE) is relatively little based on the findings of the prediction application performance. This can help the management unit make decisions by giving information and establishing policies relating to actual efforts to prepare for, plan for, prevent, and control the spread of COVID-19.

Keywords


Average-Based, COVID-19, Forecasting, Fuzzy Time Series, Prediction

Full Text:

PDF

References


C. H. Aladag, U. Yolcu, E. Egrioglu, and A. Z. Dalar, “A new time invariant fuzzy time series forecasting method based on particle swarm optimization,” Elsevier. Applied Soft Computing, Vol. 12, No. 10 (2012, Oct.) 3291–3299.

Y. P. Anggodo, W. F. Mahmudi, “Peramalan Butuhan Hidup Minimum Menggunakan Automatic Clustering dan Fuzzy Logical Relationship,” FILKOM UB. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Vol. 3, No. 2 (2016) 94-102.

K. Bisht and S. Kumar, “Fuzzy time series forecasting method based on hesitant fuzzy sets,” Elsevier. Expert Systems with Applications, Vol. 6 (2016, Dec.) 557-568.

P. C. Chang, Y. W. Wang, and C. H. LIU, “The development of a weighted evolving fuzzy neural network for PCB sales forecasting,” Elsevier. Expert Systems with Applications, Vol. 32, No. 1 (2007, Jan.) 86–96.

E. Fani, F. A. Widjajati, dan S. Soehardjoepri, “Perbandingan Metode Winter Eksponensial Smoothing dan Metode Event Based untuk Menentukan Penjualan Produk Terbaik di Perusahaan X,” Jurusan Matematika FMIPA ITS. Jurnal Sains dan Seni ITS, Vol. 6, No. 1 (2017) 2337-3520.

J. E. Hanke and D. W. Wichern. (2005). Business Forecasting. New Jersey. Prentice Hall, ED-9.

Available: https://opac.perpusnas.go.id/DetailOpac.aspx?id=672286

K. H. Huarng and T. H. K. YU, “Modeling fuzzy time series with multiple observations,” Iternational Journal of Innovative Computing, Information and Control (IJICIC), Vol. 8, No. 10 (2012, Oct.) 7415-7426.

Kementerian Kesehatan Republik Indonesia. Info Infeksi Emerging Kementerian Kesehatan RI [Internet]. 2020 [updated 2020 March 30; cited 2020 March 31]. Available from: https:// infeksiemerging.kemkes.go.id/.

W. Lu, X. Chen, W. Pedrycz, X. Liu, and J. Yang, “Using interval information granules to improve forecasting in fuzzy time series,” Elsevier. International Journal of Approximate Reasoning, Vol. 57 (2015, Feb.) 1–18.

N. A. Nugroho dan A. Purqon, “Analisis 9 Saham Sektor Industri di Indonesia Menggunakan Metode SVR,” Prosiding SKF. Seminar Kontribusi Fisika, Bandung, (2015, Dec. 16-17) 295-300.

P. Singh and B. BORAH, “An efficient time series forecasting model based on fuzzy time series,” Elsevier. Engineering Applications of Artificial Intelligence, Vol. 26, No. 10 (2013, Nov.) 2443–2457.

S. Solikhin dan U. Yudatama, “Fuzzy Time Series dan Algoritme Average Based Length untuk Prediksi Pekerja Migran Indonesia,” FILKOM UB. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Vol. 6, No. 4 (2019, Aug.) 369-376.

A. Susilo, C. M. Rumende, C. W. Pitoyo, W. D. Santoso, M. Yulianti, Herikurniawan, R. Sinto, G. Singh, L. Nainggolan, E. J. Nelwan, L. K. Chen, A. Widhani, E. Wijaya, B. Wicaksana, M. Maksum, F. Annisa, C. O. M. Jasirwan, dan E. Yunihastuti, “ Coronavirus Disease 2019: Tinjauan Literatur Terkini Coronavirus Disease 2019: Review of Current Literatures,” Departemen Ilmu Penyakit Dalam Universitas Indonesia Jurnal Penyakit Dalam Indonesia, Vol. 7, No. 1 (2020, Mar.) 45-67.

L. Wang, X. Liu, and W. Pedrycz, “Effective intervals determined by information granules to improve forecasting in fuzzy time series,” Elsevier. Expert Systems with Applications, Vol. 40, No. 14 (2013, Oct.) 5673-5679.

World Health Organization. Situation Report – 42 [Internet]. 2020 [updated 2020 March 02; cited 2020 March 15]. Available: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200302-sitrep-42-covid-19.pdf?sfvrsn=224c1add_2.

World Health Organization. Novel Coronavirus (2019-nCoV) Situation Report -54 [Internet]. WHO; 2020 [updated 2020 March 15; cited 2020 March 30]. Available: https://www.who.int/ docs/default-source/coronaviruse/situation-reports/20200314- sitrep-54-covid-19.pdf?sfvrsn=dcd46351_2.

World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report – 70 [Internet]. WHO; 2020 [updated 2020 March 30; cited 2020 March 31]. Available: https://www.who.int/ docs/default-source/coronaviruse/situationreports/ 20200330- sitrep-70-covid-19.pdf?sfvrsn=7e0fe3f8_2.

S. Xihao and L. Yimin, “Average-based fuzzy time series models for forecasting Shanghai compound index,” ACADEMIC-World Academic Union. World Journal of Modelling and Simulation, Vol. 4, No. 2 (2008) 104-111.




DOI: https://doi.org/10.26877/jiu.v7i2.9559

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Endro Dwi Wuryanto, Nella Valen Ika Puspita



Creative Commons License
Jurnal Informatika Upgris by Program Studi Informatika UPGRIS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.