Evaluasi dari metode: trapesium, simpson 1/3, simpson 3/8 dan newton cotes orde 4-10 untuk menghitung integral tertentu secara numerik

Mulyono Mulyono

Abstract


Certain integrals are integrals that handle integral computations between predetermined integral boundaries. This study aims to evaluate and compare several methods to calculate certain integrals numerically, especially for quite complex and tabulated functions, namely the function f(x), which is not explicitly known. The methods in question include the Trapezoidal method, the Simpson 1/3 method, the Simpson 3/8 method, and the Newton-Cotes method of orders 4 to 10. The main factor in comparing the methods mentioned above is the accuracy of the numerical solution. This study shows that for integral problems that can be calculated analytically, the results of calculations using the Newton-Cotes method of order 6 and with many partitions of 12 ( n = 12), the error is 0.0000026%. In contrast, with the Newton-Cotes method of order 6 and with n = 30, the error is 0.000000002 %, while with the Newton-Cotes method of order 10 and using n = 30, the error is 0.00000000 %.

Full Text:

PDF

References


Chapra, S.C. & Canale, R.P. (1991).“ Numerical Methods For Engineers with Personal Computer Applications”, Mc.Graw-Hill Book Company, New York.

Conte, D.S. & Carl de Boor, D.C.(1992). “ Dasar-Dasar Analisis Numerik, Suatu Pendekatan Algoritma”, Penerbit Erlangga.

Karris, T.S.(2007). “ Numerical analysis using MATLAB and Excel”, Orchard Publications, California.

Klusalaas, J.(2005). “Numerical methods in engineering with MATLAB’, Cambridge Univ. Press.

Munir, R.(2013).“ Metode Numerik “, Informatika Bandung, 271-297.

Otto, S.R dan J.P. Denier, J.P. (2005). “An introduction to programming and numerical methods in MATLAB’, Springer – Verlag.

Triatmodjo, B.(1992). “ Metode Numerik”, Beta Offset, 93-102.

Yang, W.Y, Cao, W., Kim, J., Park, K.W., Park, H.H, Joung, J., Ro, J.S., Lee, H.L., Hong, C.H., Taeho Im, T. (2020)..“Applied numerical methods using MATLAB”, Wiley-Interscience, Canada.




DOI: https://doi.org/10.26877/aks.v13i3.12908

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

AKSIOMA : Jurnal Matematika dan Pendidikan Matematika is licensed under a  Creative Commons Attribution-ShareAlike 4.0 International License.


AKSIOMA : Jurnal Matematika dan Pendidikan Matematika Indexed by:

    

 

                 

 

Copyright of AKSIOMA : Jurnal Matematika dan Pendidikan Matematika

 

 

View Aksioma Stats