Modifikasi metode Schroder tanpa turunan kedua dengan orde konvergensi empat
Abstract
Metode Schroder merupakan metode iterasi berode dua yang digunakan untuk menentukan akar-akar persamaan nonlinear. Artikel ini membahas modifikasi metode Schroder untuk meningkatkan orde konvergensi. Metode Schroder dengan satu parameter real dikembangkan menggunakan ekspansi deret Taylor orde dua. Metode Schroder yang dimodifikasi masih memuat turunan kedua. Selanjutnya, turunan kedua tersebut direduksi menggunakan kesamaan dua metode iterasi. Berdasarkan hasil kajian, metode iterasi baru mempunyai orde konvergensi empat yang melibatkan tiga evaluasi fungsi dengan indeks efisiensi sebesar untuk b = ½. Simulasi numerik diberikan untuk menguji performa metode iterasi baru yang meliputi jumlah iterasi, orde konvergensi secara komputasi (COC), galat mutlak dan galat relatif. Nilai-nilai performa dari metode iterasi baru dibandingkan dengan metode Newton, metode Schroder, metode Chebyshev dan metode Halley. Hasil simulasi numerik menunjukkan bahwa performa metode iterasi baru lebih baik dibandingkan dengan metode iterasi lainnya.
Full Text:
PDFReferences
Alamsyah & Wartono. (2017). Modifikasi metode Chaucy tanpa turunan kedua dengan orde konvergensi empat. Jurnal Sains Matematika dan Statistiska, 3(2), 59 – 66.
Amat, S., Busquier, S., Gutierrez, J. M., & Hernandez, M. A. (2008). On the global convergence of Chebyshev’s iterative method. Journal of Computational and Applied Mathematics, 220, 17– 21. doi:10.1016/ j.cam.2007.07.022.
Bahgat, M. S. M. (2012). New two-step iterative methods for solving nonlinear equations. Journal of Mathematics Research, 4(3), 128 – 131. doi:10.5539/jmr.v4n3p128.
Behl, R., & Kanwar, V. (2013). Variants of Chebyshev’s method with optimal order of convergence. Tamsui Oxford Journal of Information and Mathematical Sciences, 29(1), 39 – 53.
Behl, R., Alsolami, A. J., Pansera, B. A., Al-Hamdan, W. M., Salimi, M., & Ferrara, M. (2019). A new optimal family of Schroder’s method for multiple zeros. Mathematics, 7(11), 1 – 14. doi :10.3390/math7111076.
Chun, C., & Kim, Y. (2010). Several new third-order iterative methods for solving nonlinear equations. Acta Applied Mathematica, 109, 1053 – 1063. doi:10.1007/s.10440-008-9359-3.
Kanwar, V., & Tomar, S. K. (2007). Modified families of Newton, Halley and Chebyshev methods. Applied Mathematics and Computation, 192, 20 – 26. doi:10.1016/j.amc.2007/02.119.
Kanwar, V., Sharma, K. K., & Behl, R. (2010). A new family of Schroder’s method and its variants based on power means for multiple roots of nonlinear equations. International Journal of Mathematical Education in Sciencea and Technology, 41(4), 558 – 565. Doi: 10.1080/ 00207390903564660.
Kung, H. T., & Traub, J. F. (1974). Optimal order of one-point and multipoint iteration. Journal of the Association for Computing Machinery, 21(4), 643 – 651. doi:10.1145/321850.321860.
Petkovic, L., & Petkovic, M. (2008). The link between Schorder’s iteration methods of the first and second kind. Novi Sad Journal of Mathematics, 38(3), 55 – 63.
Potra, F.A., & Ptak, V. (1984). Nondiscrete introduction and iterative processes, in: Research Notes in Mathematics, 103, Pitman: Boston.
Rahmawati, Utami, S. A., & Wartono. (2018). Variant of two real parameters Chun-Kim’s method free second derivative with fourth-order convergence. Proceeding of the International Conference on Mathematics and Islam (ICMIS) 2018, 3 – 5 Agustus 2018, hal. 307 – 313. doi:10.5220/0008521203070313.
Scavo, T. R., & Thoo, J. B. (1995). On the geometry of Halley’s method. The American Mathematical Monthly, 102(5), 417 – 426. doi:10.1080/ 00029890.1995.12004594.
Thukral, R. (2016). New fourth-order Schroder-type method for finding zeros of nonlinear equations having unknown multiplicity. British Journal of Mathematics and Computer Sciences, 13(1), 1 – 10. doi: 10.9734/ BJMCS/2016/21820.
Thukral, R. (2017). Further accelaration of Thukral third-order method for determining multiple zeros of nonlinear equations. American Journal of Computational and Applied Mathematics, 7(5), 123 –128. doi:10.5923/ j.ajcam.20170705.01
Traub, J. F. (1964). Iterative methods for the solution of equations. Prentince-Hall Inc, NJ : Englewood Cliffs.
Wartono, Soleh, M., Suryani, I., Zulakmal, & Muhafzan. (2018). A new variant of Chebyshev-Halley’s method without second derivative with convergence of optimal order. Asian Journal of Scientific Research, 11(3), 409 – 414. doi:10.3923/ajsr.2018.409.414.
Wartono, Agustiwari, R., & Rahmawati. (2019). New modification of Behl’s method free from second derivative with an optimal order of convergence. Indonesian Journal of Pure and Applied Mathematics, 1(2), 10 – 19. doi:10.15408/inprime.v1i2.12787.
Weerakoon, S., & Fernando, T.G. I. (2000). A variant of Newton’s method with accelerated third-order convergence. Applied Mathematics Letters, 13, 87 – 93. doi:10.1016/50893-9659(00)00100-2.
DOI: https://doi.org/10.26877/aks.v11i2.6060
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
AKSIOMA : Jurnal Matematika dan Pendidikan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
AKSIOMA : Jurnal Matematika dan Pendidikan Matematika Indexed by:
Copyright of AKSIOMA : Jurnal Matematika dan Pendidikan Matematika