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Abstract. This paper proposes a zonation method for training the two reinforcement learning 

agents. We demonstrate the method's effectiveness in the double snake game. The game consists 

of two snakes operating in a fully cooperative setting to maximize the score. The problem in this 

game can be related to real-world problems, namely, coordination in autonomous driving cars 

and the operation of collaborative mobile robots in warehouse applications. Here, we use a deep 

Q-network algorithm and the zonation method to train the two agents to play the double snake 

game collaboratively through a decentralized approach, where distinct state and reward functions 

are assigned to each agent. To improve training efficiency, we utilize the snake sensory data of 

the surrounding objects as the input state to reduce the neural network complexity. The results 

show that after 100 episodes, agents that are trained with the zonation method achieve a game 

score four times higher than without the zonation method. Furthermore, with the optimized 

hyperparameters, the agents earn an average game score of 15.4 with just under 140 training 

episodes. The results demonstrate that the proposed approaches can be used to train collaborative 

multi-agents efficiently, especially in the limited computing resources and training time 

environment. 
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1.  Introduction  

Machine learning has been widely used for many applications especially for, prediction, data clustering, 

and even chatbot [1]–[4]. Methods in machine learning can be classified into three learning paradigms: 

supervised learning, unsupervised learning, and reinforcement learning (RL) [5]. Supervised learning 

utilizes data and labels trained in a single process to generate a model that can generate predictions of 

unseen data. On the other hand, unsupervised learning uses data to train a model that can extract the 

intrinsic pattern in the corresponding data. In contrast to supervised and unsupervised learning, RL uses 

trial and error in the training process of an agent to learn the best policy, which can determine an action 

that can maximize total reward in a particular environment [6]. In RL, we often engage in a complex 
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environment that is suitable to be solved with deep reinforcement learning (DRL), which is an RL 

method that uses the prediction ability of neural networks to assist an agent in learning in an environment 

with a considerable number of actions and states [7], [8]. 

DRL has been applied to different fields, such as robotics, automobile, and game [9], [10]. The study 

of DRL in games often aims to minimize the risk of DRL implementation in the real world by creating 

a virtual world that can simulate actual conditions. This virtual world can be used as the testbed to 

evaluate the possible DRL solutions and benchmark the agent performance [11], [12]. Different games 

are commonly used in the study of DRL, including single-player games such as Atari and Super Mario, 

as well as multi-player games such as Mahjong [13], multi-player Texas Hold'em [14], and StarCraft 

[15]. 

The deep Q-Network (DQN) algorithm is typically used in the game to study DRL due to its superior 

performance compared to the previous algorithms [16], [17]. This algorithm combines neural network 

and Q-learning algorithms to predict optimal action value and policy in sequential decision-making [5], 

[7], [18]. DQN has been applied to train agents to play various games, such as multiple classic Atari 

2600 games and Snake Game [19]. By utilizing the image pixels of the game screen, DQN-based agents 

can be trained to play various video games with a decent performance. However, this approach requires 

a complex neural network and a considerable amount of training time to achieve a sufficient level of 

performance [5], [20]. To reduce the amount of training time, Sebastianelli et al. proposed an approach 

that uses sensory data to train the agent under 150 episodes in their snake game environment [5]. The 

proposed approach works well with a simple neural network, which makes it efficient. 

Recently, DQNs have been used in various multi-agent games with different settings, including 

competitive or cooperative settings. In cooperative setting games, there are generally two approaches 

for agents' reward functions: common reward function and team-average reward [21]. In the common 

reward function approach, all agents usually share a common reward function; meanwhile, team-average 

reward addresses each agent with a different reward function [22]–[24]. Team average reward allowed 

privacy among agents, recently called the decentralized approach in multi-agent games. Ardi Tampu et 

al. developed a multi-agent with DQN algorithms for Pong, and Lei Han et al. studied a multi-agent for 

Starcraft II; both groups successfully used DQN for multi-agent applications [25], [26]. However, both 

studies require millions of steps to train the agents until they reach a significant performance. Efficiency 

in multi-agent training time is necessary, mainly when the computing resources and time are limited. 

In this paper we proposed a zonation method for training the two reinforcement learning agents to 

play a double snake game. The proposed double snake game involves two snakes collaborating to 

maximize the game score. The rules of this game are derived from the classic snake game, such as a 

point is collected when a snake eats the apple, both snakes are forbidden to hit the edge of the snake 

field, and a snake is not permitted to strike its own body or another snake. With this double snake game, 

we can simulate the characteristics of real-world problems, such as the operation of collaborative mobile 

robots for automated picking systems in warehouse applications and lane coordination and parking 

coordination for autonomous driving cars [27]–[30]. We train agents by using DQN to play a double 

snake game collaboratively with the decentralized approach by assigning each agent's different state and 

reward functions. We use snake sensory data of the surrounding objects to minimize the neural network 

complexity and training time. The zonation method that we use in this collaborative multi-agent setting 

is compatible with the simplicity of the neural network and input state that merely needs a small number 

of episodes to train the multi-agent. 

2.  Methods 

2.1.  Double Snake Game 

The classic snake game in which the player controls the snake to eat the spawned apple at a random 

place to maximize the game score. The snake’s body will increase by one pixel and the game score will 

increase by one point when the snake eats the apple. Moreover, in this classic snake game, the player 

needs to avoid the collision of the snake’s head either with the wall or with the snake’s body. In this  
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Figure 1. The game will be terminated (a), (b) if a snake head hits the edge of the snake field, (c), (d) 

if a snake hits its own body, or (e) if two snakes collide with each other. (f) Initial conditions of double 

snake game. 

paper we propose the double snake game which is derived from the classical snake game. The double 

snake game consists of two snakes, an apple, and snake field with the size of 20 × 20 pixels. Each pixel 

in the field can only be occupied by an apple or a single snake part (either body or head), if there are 

two parts of snake (either the same snake or different snake) in the same pixel then the game will be 

over. When a snake hits the edge of the snake field the game will be over as well. The conditions that 

can make the double snake game terminate can be seen in Figure 1. 

The double snake game starts with an apple in a random position and two motionless snake heads, 

as depicted in Figure 1(f). When a snake eats the apple, when the snake’s head is in the same pixel as 

the apple, the associated snake will elongate by one pixel. At the same time, the apple will be respawned 

at a new random position, and the score will be increased by one point. Correspondingly, the agent who 

plays the associated snake will receive 10 reward points. During the game, there is only one apple in the 

snake field. When a snake hits its own body, or hits another snake, or the edge of the snake field, the 

game will be over and restarted, and the snake will get -10 points as the punishment. 

The input states used to train the agent consist of a vector with 18 elements. Elements of the input 

states are:  

states  =  [apple up, apple right, apple down, apple left, 

      danger up, danger right, danger down, danger left, 

      move up, move right, move down, move left, 

      flag up, flag right, flag down, flag left, 

       game over, zone]. 

 

Every element in the input state is filled by a binary value of 0 or 1. The first to the fourth element of 

the input state represents the position of the apple relative to the snake head, and these states will assist 

the agent in finding the position of positive reward. The fifth to the eighth element of the input state 

shows the sides of the snake head that are in touch with an object (its own body, another snake, or the 

wall). These states will assist the agent in avoiding the position of negative reward. The ninth to the 

twelfth element of the state shows the direction of the snake head movement. This information will 

assist the agent in calculating the current movement toward the direction of reward. The thirteenth to 

the sixteenth element of the state shows the position of the zone flag relative to the head of the snake. 

This zone flag position assists the agent in staying in the zone while waiting for the apple to spawn in 

the agent’s zone. The seventeenth element represents whether the game is still on or over. This is the 

state that is triggered if the agent takes the wrong action when one or more of the danger states is on. 

The eighteenth element of the state shows whether the snake is in its zone. When the agent is out of the 

zone, it will be rewarded negatively. The description of the zone and zone flag will be explained in 

section 2.3. 

2.2.  RL Agent 

The double snake game is played by RL agents, which consist of neural network that can predict the 

value of actions when a particular input state is given. In the training process of an agent, the neural 

network learns a policy that is a function of an optimal action value. This policy is obtained by training 

the neural network through trial and error to maximize total reward while playing the double snake 

game. Each time the agent chooses an action, it will obtain a reward that can be a positive or a negative 

value, depending on the impact of the corresponding action. The agent training process aims to 

maximize the sum of rewards that can be achieved in a given state.  

Figure 2 shows the agent architecture comprising of five fully-connected neural network layers. The 

first layer is an input layer with 18 nodes to proceed with the 18 input state elements. The subsequent 

three layers extract the intrinsic features in an input state. These features are then used as the parameters 

to predict optimal action value. Each layer in this layer group is followed by a Rectified Linear Unit 
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(ReLU). The last layer is an output layer, which consists of four nodes that generate the prediction value 

of each action. The agent will execute the action with the highest value. 

 

 
 

Figure 2. Neural network architecture of the RL agent. 
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Figure 3. (a) Snake zone coordination in apple consumption for each snake during the game. (b) The 

game score comparison with and without zonation. Behavior of the snakes (c) without zonation and (d) 

with zonation. 

 
Figure 4. Score distribution of node (a) 100, (b) 150, (c) 200, and (d) 250. 

2.3.  Snake Zonation Method 

The snake zonation method is proposed in this paper to optimize the collaboration between the two 

agents in playing the double snake game. As shown in Figure 3(a), the snake field is divided into two 

zones: red zone for the first snake and grey zone for the second snake. Each agent is responsible for 

controlling the snake to eat the apple in their own zone; respectively, the first snake will eat the apple in 

the red zone, and the second snake will eat the apple in the grey zone. When the apple is spawned in the 

red zone, the second snake will be waiting in the grey zone by looping around the flag in the respective 

zone. Conversely, the first snake will be looping around the red zone flag when the apple is spawned in 

the grey zone. To measure the effectiveness of this method, we compare the agent performance in terms 

of the game score with and without the zonation method. 

3.  Results and Discussion 

In training the MARL for the double snake game, the results may differ from one trial to another. To 

visualize the difference, we provide the shade color in the data to elucidate the score distributions during 

training. 

3.1.  Zonation 

Agents’ performance with and without the zonation method can be seen in Figure 3(b). It is shown that 

the game score without the zonation method is higher in the early episodes, while the agents with the 
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zonation method show a higher game score in the later episodes.  This situation can be caused by the 

smaller number of states owned by the agents without the zonation method, so fewer training processes 

are required in neural networks to reach convergence. On the other hand, in the case of the zonation 

method, the agents have a larger number of states to train. In the higher episodes, we can see that the 

agents without the zonation method show a steady performance without further improvement. The lower 

game score resulting from the agents without the zonation method in the higher episode can be attributed 

to the behavior of the snakes that move closely to each other while searching for the apple as can be 

seen in Figure 3(c). On the other hand, the agents with the zonation method show a better game score 

due to the better coordination of snake positioning in the respective zone, as shown in Figure 3(d).  We 

have shown that with the extra input states, including zone flag states and zone states, the training 

process is much more efficient especially when the training reach more than 70 episodes that resulting 

the efficient coordination of snakes to search for the apple in their respective zone. 

3.2.  Hyperparameters Optimizations 

The hyperparameters tuned in the optimization are the number of nodes in neural network layers, 

memory, sampling memory, and episodes. As shown in Figure 4, by training the agents for 100 episodes 

with node variation of 50, 100, 150, 200. We can see that the agents with 100 nodes show the highest 

game score compared to other node variations, which is the most optimum trade-off between prediction 

accuracy and neural network complexity. The agent with 50 nodes shows a lower game score due to a 

lack of complexity in the neural network to be able to predict an appropriate action in each state. 

Variations with more nodes, such as 150 and 200, suffer from excessive neural network complexity, 

resulting in a lower game score. 

The following optimizations are memory and sampling memory; the memory variation is 1000, 1500, 

2500, and 3500, while the sampling memory is 500 and 1000 for every memory variation. To simplify 

the data analysis, we calculate the average score for every ten episodes and visualize it in a bar chart, as 

can be seen in Figure 5 and Figure 6. In Figure 5, we can see the comparison of average scores for
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Figure 5. Comparison of average game scores for batches 500 and 1000 in every ten episodes for 

memory of (a) 1000, (b) 1500, (c) 2500, and (d) 3500. 

different batches in respective memory sizes. For all memory sizes, it is shown that a batch size of 500 

exhibits a higher average score than a batch size of 1000. Furthermore, we can see the average score 

difference between a batch size of 500 and a batch size of 1000; the average score difference is smaller 

as the episode increases. The batch size is the size of experience that the agent memorizes; in the lower 

episode, a batch size of 1000 keeps ineffective experiences, and as the episode increases, the batch size 

will eventually replace the earliest experience with the latest experience due to the size constraint. At 

this time, the batch size of 1000 starts to collect more effective experiences, resulting in better agent 

performance and increasing the average score. However, the batch size of 1000 still holds more 

ineffective experiences than effective experiences, resulting in a lower average score than the batch size 

of 500. Apart from the fact that the batch size of 500 holds a sufficient number of effective experiences, 

it also collects experiences faster than the batch size of 1000. These reasons yield a superior performance 

of batch size 500 than batch size 1000. 

Figure 6 compares the average score for memory 1000, 1500, 2500, and 3500 for a batch size of 500 

and 1000, respectively. For batch sizes 500 and batch sizes 1000, the memory size of 2500 exhibits an 

overall higher average score compared to memory sizes of 1000, 1500, and 3500. From the batch size 

of 500 and batch size of 1000, we can see a similar trend of the average score when the memory size 

increases from 1000 to 3500; the average score increases as the memory size increases to 2500, then the 

average score decreases when the memory size increase to 3500. The improvement of the average score 

when the memory size increases to 2500, can be attributed to a better prediction from the network of the 

agent as the network complexity increases, while the reduction of the average score when the memory 

size increases to 3500 is due to the excessive complexity of the agent’s network, this complexity makes 

the agent learns less efficient than the agent with the memory size of 2500. We can see that when the 

episodes increase, the average memory score size of 3500 is nearly the average score of 2500. 

 
Figure 6. Comparison of average game score for memory 1000, 1500, 2500, and 3500 in every 10 episodes 

for (a) batch of 500 and (b) batch of 1000. 
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Figure 7. Average game score for every 10 episodes from 1st to 180th episode. 

Another hyperparameter we optimize is episode; since we aim to minimize the training process time, 

the episode is limited to 180 episodes at maximum. By observing the average game score for every ten 

episodes, we can see that the highest score lies between 120-140 episodes, with an average score of 

around 15. As can be seen from Figure 7, the average game score increases due to more experience in 

the memory as the episode rises. However, when the memory is full, new memories will replace the 

early memory, and the agents will eventually forget most of the early memories, especially how to avoid 

collision; hence, the score will reduce as the episodes increase. 

4.  Conclusion 

In summary, we have demonstrated the zonation method in the double snake as a simple method to 

improve the collaborative performance between two agents in the game. We have shown that by dividing 

the field into two zones, red zone, and grey zone, the agents offer a significantly better positioning to 

avoid collision between two snakes. Furthermore, the hyperparameters can be made efficient by 

employing sensory data as the input state, that is, under 180 episodes. Under the optimization of 

hyperparameters, we have shown that the game score increases as the number of nodes, memory size, 

and episodes increase to an extent, and then the score decreases as those hyperparameters increase. With 

the optimized hyperparameters, we obtain the highest average game score of 15.4 with respective 

hyperparameters: the number of nodes of 100, memory size of 2500, batch sampling of 500, and episode 

of 140. These results suggest that our approaches can be used to train collaborative multi-agents 

efficiently, especially when computing resources and time are the main considerations. In future work, 

we will develop methods for agents to play a competitive game and then further develop the complete 

setup game, including collaborative and competitive game strategy. 

Considering the application of MARL in the physical world, we need to ensure the safety issues due 

to the nature of these agents learning by trial and error. The exploration nature of MARL must be 

designed carefully to ensure the agents are safe when deployed. Moreover, we need to design a proper 

environment to safely train the agents. 
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