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Abstract. Wildfire risk analysis can be based on historical data of fire hotspot occurrence. 

Traditional wildfire risk analyses often rely on the use of administrative or grid polygons which 

has their own limitations. This research aims to develop a wildfire risk map by implementing 

DBSCAN clustering method to identify areas with wildfire risk based on historical data of 

wildfire hotspot occurrence points. The risk ranks for each area/cluster were then 

ranked/calculated based on the cluster density. The result showed that this method is capable of 

detecting major clusters/areas with their respective wildfire risk and that the majority of 

consequent fire occurrences were repeated inside the identified clusters/areas. 
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1.  Introduction  

Wildfire is one of the most notable disasters occurred around the world. Wildfires had caused a large 

amount of economic losses and environmental damaged. Preventive actions/managements are required 

in order to minimize the negative effect caused by wildfire. One of the main tasks in managing wildfire 

is the detection of the areas which have high wildfire risk. The determination of area with a high risk of 

wildfire or any geographical phenomena (i.e., the spatial ‘hotspot’) often relied on the use of 

administrative or grid polygons which has their own limitations, as mentioned by Han and Shu [1]. 

Therefore, the detection/determination of high fire risk areas should implement ‘unsupervised’ methods 

that are independent of administrative or grid polygons. One of the available options is by implementing 

a clustering algorithm to detect clusters of points and to set boundaries for each cluster. This research 

aims to develop a wildfire risk map by implementing DBSCAN clustering method to identify areas with 

wildfire risk based on historical data of wildfire hotspot occurrence points. Risk ranks for each identified 

area/cluster were then ranked/calculated based on their density (number of hotspot points per km square). 

The resulted wildfire risk map is useful in wildfire management so that preventive/mitigating action can 

be done to minimize losses or other negative effects. 

2.  Methods 

2.1.  Wildfire Risk Assessment 

Research often used historical data of wildfire to determine wildfire risk in certain areas. Recent 

research had explored the risk of fire spreading to the urban area in Australia [2]. Other research used 
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generalized additive model to estimate wildfire risk in Mediterranean area [3], and used artificial neural 

networks to predict wildfire risk in South Africa [4]. The historical data can be obtained from satellite 

images such as from NASA [5]. The risk model might be based on several variables related to wildfire, 

such as the meteorological variables [6-8], vegetation indices [6,9], and other variables [6,7,9]; or based 

only on historical wildfire data [10]. When relying only on historical wildfire data, assessments can be 

based on the number of or the location of wildfire hotspot occurrences. A recent reseach also had 

explored a rule-based approach to wildfire model based on historical wildfire data[11]. 

The identification of area with high fire occurrence/risk (the spatial ‘hotspot’) can also be done using 

spatial analysis such as the Anselin’s Moran’s I or LISA [12] and Getis-Ord Gi [13]. This approach is 

sensible since most geographical phenomena often show a spatial pattern (i.e. clustered) [14], including 

wildfire itself [15,16]. Even the evidence of spatial autocorrelation itself can be included in the model 

to make it better [17]. However, these analyses often use administrative polygons or grid polygons and 

require a high number of polygons to be used in a study area in order for the analysis to give a good 

result. Furthermore, the use of polygons itself also has its own drawbacks, namely the scale mismatch, 

shape mismatch, and location mismatch as mentioned in [1].  

2.2.  DBSCAN Clustering 

Density-Based Clustering of Applications with Noise (DBSCAN) is a modern clustering algorithm 

which has the capability to detect cluster in spatial points data (coordinates) and not relying on polygons. 

DBSCAN was first introduced by Ester, et.al in 1996 [18]. DBSCAN has two parameters namely eps 

which represent maximum distance/radius from a point where the membership of other points enclosed 

within it is evaluated; and minpts which tell the minimum number of points to be considered as a member 

of a cluster within the radius of eps. DBSCAN works by giving each point a circle with the radius of 

determined eps, followed by the membership evaluation for each point enclosed in that circle. A point 

would fall into one of three categories, namely a core point, border point, or noise points. A point is 

assigned as core points if it has at least a number of member (enclosed) point equal to minpts within 

radius eps. A point is assigned as border points when a point is within eps but has a number of member 

points of less than minpts. Finally, if the point doesn’t belong to the core or border points, it is assigned 

as noise points. Noise points are not a member of any clusters. A cluster is then defined as a set 

membership containing a combination of core points surrounded by border points. The pseudocode for 

the DBSCAN algorithm is presented in Algorithm 1 [19]. 
Algorithm 1: DBSCAN Clustering 

1: DBSCAN(D, eps, MinPts) 

2:   C = 0  

3:  For each unvisited point P in dataset D 

4:   mark P as visited 

5:   N = getNeighbors (P, eps) 

6:   If sizeof(N) < MinPts then 

7:    mark P as NOISE 

8:   Else 

9:    C = next cluster 

10:    expandCluster(P, N, C, eps, MinPts) 

11:   End If  

12:   End For  

13:  

14: expandCluster(P, N, C, eps, MinPts) 

15:   add P to cluster C 

16:  For each point P' in N 

17:   If P' is not visited 

18:    mark P' as visited 

19:     N' = getNeighbors(P', eps) 

20:    If sizeof(N') >= MinPts 

21:     N = N joined with N' 
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22:    End If  

23:   End If  

24:    If P' is not yet member of any cluster  

25:    add P' to cluster C 

26:    End If 

27:   End For 

 

The research framework for this paper is shown in 

Figure 1. For the purpose of this research, DBSCAN is used 

since it has advantages over other clustering algorithms 

such as the K-Means clustering and Scan statistics. First, 

unlike the K-Means, DBSCAN does not require us to set a 

determined number of cluster k. This determination of k, of 

course, is not suitable for this research, since the number of 

identified clusters is merely a result of density evaluation 

of points in the data, i.e., an “unsupervised” algorithm. 

Furthermore, DBSCAN can detect clusters with arbitrary 

shapes, while K-Means and Scan statistics only evaluate 

and produce clusters of circular shape. This circular shape, 

of course, is not suitable to be implemented on geographical 

data since geographical phenomena come in many shapes. 

Recent use of DBSCAN in geographical clustering includes 

retail agglomerations [20], and location recommendation in 

location-based social networks [21]. Recent research also 

applied the DBSCAN to detect clusters in raster images 

[22]. Despite years of proposed improvements, the original 

DBSCAN could still perform well as long as we pick a 

reasonable parameter [23]. 

In order to calculate the density of a cluster, we need to estimate the area of each cluster, which first 

we need to determine the boundary of the clusters. One of the available options is the convex hull 

algorithm. In mathematics, a convex hull is the smallest set (area) which allows any two points in that 

set to be connected without leaving the set. It is well understood using the analogy of a stretched rubber 

band which encloses a set of points (i.e., a cluster) [24]. Wildfire data were collected from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) provided by the Fire Information for Resource 

Management System (FIRMS). This data is a result of automatic detection by NASA MODIS satellite 

for the anomaly of temperature/fire presence. For the purpose of this research, only data with 100 

confidence were used. The data of the national wildfire archive were then filtered/clipped only for the 

study area. 

 DBSCAN clustering algorithm was done in R using ‘dbscan’ function in the ‘dbscan’ package. The 

determination of eps was first based on visual examination of ‘knee’ in the K-NN distance plot provided 

by ‘kNNdistplot’ function, provided in the same package. The experimentations of eps and minpts were 

done in multiple datasets to test their performance. The datasets were varied in the time and spatial 

scope. The best and final eps and minpts value to be used in this research were then picked based on the 

experimentation result. The DBSCAN algorithm resulted in points membership assigned as a member 

of a cluster or as a noise. Noise points were removed before the creation of convex hull polygons. Each 

polygon has the attribute of its area (in degree square). This attribute is automatically generated by the 

Convex Hull function in QGIS. These areas in degree square were then converted into the areas in 

kilometer square (at the equator, one degree of longitude/latitude is about 110.57 km). Our study area is 

located at the equator, spanning from latitude 02° 25’ N to 01° 15’ S.  Clusters density were then 

calculated by dividing the number of points in each area/cluster by the cluster’s area (in km square).  
The risk ranks for each area/cluster were then ranked/calculated based on the density of the clusters. 

The rank is relative, where clusters with a density higher than the mean density are classified as a high 

 
 

Figure 1. Research framework. 
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fire risk area, while clusters with a density lower than the mean density are classified as a medium fire 

risk area. The low fire risk area then is the area outside the identified clusters. The resulted clusters with 

their corresponding fire risk ranks were then visualized using QGIS. The resulted clusters were tested 

using the test dataset from the past two years. The tools used in this research are RStudio and QGIS 

2.18. 

3.  Results and Discussion 

The study area for this researh is Riau Province in Sumatra Island, Indonesia. Wildfire data from 2001 

data 2017 were filtered only those with 100 confidence and were split into two datasets, 21252 training 

dataset has which ranged from 2001 to 2015, and 326 test dataset which ranged from 2016 to 2017. The 

wildfire locations of training dataset is shown in Figure 2a. The training dataset was run in the DBSCAN 

algorithm with eps of 0.02 degrees (~2.21 km) and minpts = 5. These values were based on 

experimentation which gave good clustering results. The DBSCAN algorithm in R package ‘dbscan’ 

resulted in 211 clusters with a total membership of 16142 points (76% of fire case data). Minor clusters 

that have historical fire counts less than 120 were then excluded. The 120 limits were estimated by the 

judgment of one fire case in 8 fire-months for 15 years. Convex hull polygons were created using QGIS 

function which also calculated the area of each cluster. The areas of each cluster (in kilometer square) 

were then calculated by multiplying the area (in degree square) with 110.57 km square (1 degree in 

equator ~ 110.57 km). Fire density for each cluster was then calculated by dividing the number of fire 

points in a cluster with the area (in kilometer square) of the corresponding cluster. The previous minor 

clusters exclusion had also eliminated low-density cluster with a density lower than 0,5 (which translated 

into less than one fire in an area of 2 km square). The result is 22 “significant” / major clusters which 

have high historical fire count and usually have a large area. These clusters were then assigned fire risk 

rank/label based on their density. The risk ranks were assigned based on their density compared to their 

mean. A density lower than the mean would be assigned as an area of medium fire risk, while a density 

higher than the mean is assigned as an area of high fire risk. The low fire risk areas are the areas which 

are not included in the final (major) clusters. This resulted in l4 medium fire risk clusters and 8 high fire 

risk clusters. One of the clusters in the high fire risk category has very high density and deemed as an 

outlier from other clusters. This cluster was then assigned as a very high fire density. The resulted 

clusters and their respective fire ranks are shown in Figure 2b. The area with a very high fire risk is 

located at the near top right of the study area. 

 

 
Figure 2. (a) Locations of fire hotspot within the study area from 2001 to 2015. (b) Resulted clusters 

with their color-coded risk ranks. (c) Recent wildfire cases overlayed with the resulted clusters. 

 

The resulted clusters were then tested against fire data from the last two years (2016-2017) which 

have 326 fire points as shown in Figure 2c. Layer overlay and intersection we used to calculate the 

number of points within the resulted clusters and resulted in 229 of 326 or 70% fire point fall within 

final significant clusters. The detailed information for each cluster is shown in Table 1. The resulted 

clusters might reveal similarity in wildfire variables such as meteorological factors, vegetation, or land 



Advance Sustainable Science, Engineering and Technology    

 

0190102-05 

 

type (peat or non-peat). From the spatial hotspot analysis view, each cluster resulted from the DBSCAN 

algorithm may also represent a hotspot (High-High) surrounded by ‘warm’ spots (High-Low). The 

hotspots are analogous to the core points, while the warm spots are analogous to border points.  

 

Table 1. The resulted clusters and their attributes.   

Cluster 

ID 

Number of points 

(Training dataset) 

Area 

(km square) 

Density  

(Points per km square) 

Risk 

Rank 

Number of 

points (Test 

dataset) 

1 4846 1043,89 4,64 
Very 

High 
45 

2 1536 533,96 2,88 High 1 

3 206 97,33 2,12 High 1 

4 1249 603,16 2,07 High 10 

5 194 110,46 1,76 High 15 

6 839 513,08 1,64 High 0 

7 162 109,70 1,48 High 0 

8 164 111,10 1,48 High 10 

9 371 262,43 1,41 Medium 4 

10 279 200,49 1,39 Medium 0 

11 214 169,80 1,26 Medium 4 

12 366 301,52 1,21 Medium 0 

13 1683 1388,49 1,21 Medium 24 

14 834 691,11 1,21 Medium 19 

15 173 152,54 1,13 Medium 0 

16 256 270,24 0,95 Medium 0 

17 168 219,24 0,77 Medium 37 

18 583 761,50 0,77 Medium 15 

19 689 966,70 0,71 Medium 26 

20 164 243,95 0,67 Medium 11 

21 244 369,38 0,66 Medium 0 

22 475 930,61 0,51 Medium 6 

 15695    228 

 

4.  Conclusion and Future Research 

Wildfire risk assessment can be based on historical data of fire hotspot occurrence. This research built 

a model for fire-risk prone areas using DBSCAN clustering applied on historical wildfire data from 

2001 to 2015 and followed by density evaluation to determine risk rank. The resulted clusters were then 

tested against recent wildfire data from the last two years, and it showed that 70% of the recent wildfire 

occurrence falls within the resulted cluster, which indicates good performance. The identified cluster 

calls the authorities to perform wildfire ignition prevention and other mitigation actions [25]. 

However, the convex hull algorithm used in this research has its own limitation in estimating area 

since it cannot create proper cluster boundary in complex cluster shapes. In that case, other cluster 

boundary estimation such as concave hull or buffer distance might work better, but some parameter 

tuning might be needed. Area estimation (in kilometer) also need to be reconsidered in a study area far 
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from the equator. Future research might also try to explore other or richer risk-ranking method. The 

determination of eps and minpts in DBSCAN, and also the risk ranking method could also be based on 

experts’ judgment or against a certain standard from the authority.  
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