Genetics, Biochemistry and Biophysical Analysis of Anthocyanin in Rice (Oryza sativa L.)
Abstract
Rice (Oryza sativa L.) is the primary staple food for half of the world population. It is generally classified based on the grain color into black, red, purple, brown, green, and white. These colored rice are determined by the composition and concentration of anthocyanin pigments in different layers of aleurone, pericarp, and seed coat. Anthocyanins are also accumulated in various tissues of the rice plants, mostly in the grain, but are also presents in leaves, leaf sheath, floral organ, and hull. The type and concentration of the anthocyanins in rice tissues are influenced by the cultivars and developmental stages. Anthocyanin-enriched rice is related to the health effects, including antioxidant, antibacterial, and anti-inflammation activities that potentially use as functional food ingredients, dietary supplements, and natural colorants. Structural and regulatory genes are involved in anthocyanin biosynthesis of rice. Various molecular biology techniques have been applied to improve productivity, nutritional contents, and market value of pigmented rice. This review focused on the genetics, biochemistry and biophysical analysis of anthocyanin in rice that will facilitate rice breeding program to develop new high-yield pigmented rice varieties.
Keywords
Full Text:
PDFReferences
Gregorio, G.B., Senadhira, D., Htut, T., & Graham, R.D. (1999). Improving iron an zinc value of rice for human nutrients. Agr. Develop. 23, 68-87.
Tsuda, T., Watanabe, M., Ohshima, K., Norinobu, S., Choi, S.W., Kawakishi, S., & Osawa, T. (1994). Antioxidative activity of the anthocyanin pigments cyanidin-3-O-β-D-glucoside and cyanidin. J. Agr. Food Chem. 42, 2407-2410.
Chung, Y.M., Lee, J.C., Kim, K.S., & Eun, J.B. (2001). Chemical compositions of 26 varieties of Korean rice straw. Food Sci. Biotechnol., 10, 267-271.
Lee, Y.R., Kim, J.Y., Woo, K.S., Hwang, I.G., Kim, K.H., Kim, K.J., Kim, J.H., & Jeong, H.S. (2007). Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci. Biotechnol., 16, 1006-1010.
Dwiningsih, Y. (2020). Molecular genetic analysis of drought resistance and productivity traits of rice genotypes. University of Arkansas, Fayetteville, USA.
Ito, V.C., Zielinski, A.A.F., Demiate, I.M., Spoto, M.H.F., Nogueira, A., & Lacerda, L.G. (2019). Effects of gamma radiation on the stability and degradation kinetics of phenolic compounds and antioxidant activity during storage of (Oryza sativa L.) black rice flour. Brazilian Archives of Biology and Technology, 62, 01–14.
Chen, X., Itani, T., Wu, X., Chikawa, Y., & Irifune, K. (2013). Physiological factors affecting transcription of genes involved in the flavonoid biosynthetic pathway in different rice varieties, Plant Signaling & Behavior, 8:12, e27555. Doi: 10.4161/ psb.27555
Chung, H.S. & Woo, W.S. (2001). A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. J. Nat. Prod., 64, 1579-1580.
Dwiningsih, Y., Kumar, A., Thomas, J., Ruiz, C., Alkahtani, J., Baisakh, N., & Pereira, A. (2021). Quantitative trait loci and candidate gene identification for chlorophyll content in RIL rice population under drought conditions. Indonesian Journal of Natural Pigments, 3, 2, 54-64. Doi: 10.33479/ijnp.2021.03.2.54
Lee, H.J., Oh, S.K., Choi, H.C., & Kim, S.U. (1988). Identification of anthocyanins from pigmented rice seed. Agric. Chem. Biotechnol., 41, 257-265.
Yoshinaga, K. (1986). Liquor with pigments of red rice. Journal of Brewing Society of Japan, 81, 337-342.
Ling, W.H., Wang, L.L., & Ma, J. (2002). Supplementation of the black rice outer fraction to rabbits decrease atherosclerotic plaque formation and increase antioxidant status. J. Nutr., 132, 20-26.
Hu, C., Zawistowski, J., Ling, W., & Kitts, D.D. (2003). Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agr. Food Chem., 51, 5271-5277.
Middleton, Jr.E., Kandaswami, C., & Theoharides, T.C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer., Pharmacol. Rev. 52: 673-751.
Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.C., Moon, R.C., & Pezzuto. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275: 218-220.
Shim, S.I., Chung, J.W., Lee, J.M., Hwang, K.T., Sone, J., Hong, B.S., Cho, H.Y., & Jun,W.J. (2006). Hepatopotective effects of black rice on superoxide anion radicals in HepG2 Cells. Food Sci. Biotechnol., 15, 993-996.
Chaudhary, R.C. (2003). Speciality rices of the world: Effect of WTO and IPR on its production trend and marketing. Journal of Food, Agriculture and Environment, 1, 2, 34–41.
Dwiningsih, Y., Rahmaningsih, M., & Alkahtani J. (2020). Development of single nucleotide polymorphism (SNP) markers in tropical crops. Adv. Sustain. Sci. Eng. Technol., 2, 2, 14065.
Ryu, S.N., Park, S.Z., & Ho, C.T. (1998). High Performance Liquid Chromatographic Determination of Anthocyanin Pigments in Some Varieties of Black Rice. Journal of Food and Drug Analysis, 6, 4. Doi: 10.38212/2224-6614.2893
Oikawa, T., Maeda, H., Oguchi, T., Yamaguchi, T., Tanabe, N., Ebana, K., Yano, M., Ebitani, T., & Izawa, T. (2015). The Birth of a Black Rice Gene and Its Local Spread by Introgression. Plant Cell, 27, 2401-2414.
Kristamtini, P.H. (2009). Potensi pengembangan beras merah sebagai plasma nutfah Yogyakarta. Jurnal Litbang Pertanian, 28, 3, 88-95.
Pratiwi, R. & Purwestri, Y.A. (2017). Black rice as a functional food in Indonesia. Functional Foods in Health and Disease, 7, 3, 182-194.
Ling, W.H., Cheng, Q.X., Ma, J. & Wang, T. (2001). Red and black rice d ecrease artherosclerotic plaque formation and increase antio xidant status in rabbits. J. Nutr., 131, 1421-1426.
Xia, M., Ling, W.H., Ma, J., Kitts, D.D., & Zawistowski, J. (2003). Supplementation of diets with the black rice pigment fraction attenuates atherosclerotic plaque formation in apolipoprotein e deficient mice. The Journal of nutrition, 133, 3, 744-751.
Xu, Z., Hua, N., & Godber, J.S. (2001). Antioxidant activity of tocopherols, tocotrienols, and γ-Oryzanol components from rice bran against cholesterol oxidation accelerated by 2, 2 ‘-Azobis (2-methylpropionamidine) dihydrochloride. Journal of Agricultural and Food Chemistry, 49, 4, 2077-2081.
Sitarasi, R., Nallal, U.M., Razia, M., Chung, W.J., Shim, J., Chandrasekaran, M., Dwiningsih, Y., Rasheed, R.A., Alkahtani, J., Elshikh, M.S., Debnath, O., & Ravindran. (2022). Inhibition of multi-drug resistant microbial pathogens using an ecofriendly root extract of Furcraea foetida silver nanoparticles. Journal of King Saud University-Science, 34, 2, 101794. Doi: 10.1016/j.jksus.2021.101794
Dwiningsih, Y. (2014). Nutritional characterization of bread contained natural pigment from insect. Indonesian Scientific Research Olympic.
Xia, M., Ling, W.H., Ma, J., & Zawistowski, J. (2002). Supplementation of diets with the black rice pigment fraction attenuates atherosclerotic plaque formation in apolipoprotein E deficient mice. J. Nutr., 133, 744-751.
Chiang, A.N., Wu, H.L., Yeh, H.I., Chu, C.S., Lin, H.C., & Lee, W.C. (2006). Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids, 41, 797-803.
Choi, Y.M., Jeong, H.S., & Lee, J.S. (2007). Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem., 103, 130-138.
Samyor, D., Das, A.B., & Deka, S.C. (2017). Pigmented rice a potential source of bioactive compunds: a review. International Journal of Food Science and Technology, 52, 1073-1081. Doi:10.1111/ijfs.13378
Kang, M., Rico, C.W., & Lee, S. (2011). Varietal Difference in Physicochemical Properties of Pigmented Rice Varieties. J. Crop Sci. Biotech. Doi: 10.1007/s12892-010-0041-8
Yawadio, R., Tanimori, S., & Morita, N. (2007). Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem., 101, 1644-1653.
Nam, S.H., Choi, S.P., Kang, M.Y., Koh, H.J., Kozukue, N., & Friedman, M. (2006). Antioxidative activities of bran extracts from twen ty one pigmented rice cultivars. Food Chem., 94, 613-620.
Toyokuni, S., Itani, T., Morimitsu, Y., Okada, K., Ozeki, M., & Kondo, S. (2002). Protective effect of colored rice over white rice on Fen ton reaction-based renal lipid peroxidation in rats. Free Radic. Res. 36: 583-592
Oki, T., Matsuda, M., Kobayashi, M., Nishiba, Y., Furuta, S., & Suda, I. (2002). Polymeric procyanidins as radical-scavenging components in red-hulled rice. J. Agric. Food Chem., 50, 7524-7529.
Adom, K.K. & Liu, R.H. (2002). Antioxidant activity of grains. J. Agric. Food Chem., 50, 6170-6182.
Lazze, M.C., Pizzala, R., savio, M., Stivala, L.A., Prosperi, E., & Bianchi, L. (2003). Anthocyanins protect against DNA damage induced by tert-butyl-hydroperoxide in rat smooth muscle and hepatoma cells. Genetic Toxicology and Environmental Mutagenesis, 535, 103-115.
Dwiningsih, Y. (2012). Margarine with high antioxidant content. Natural Pigment Conference.
Dwiningsih, Y. & Notosoedarmo, S. (2012). Antioxidant sources from insects. Natural Pigment Conference.
Hou, Z., Qin, P., & Ren, G. (2010). Effect of Anthocyanin-Rich Extract from Black Rice (Oryza sativa L. Japonica) on Chronically Alcohol-Induced Liver Damage in Rats. J. Agric. Food Chem., 58, 3191-3196. Doi: 10.1021/jf904407x
Hemamalini, S., Umamaheswari, D.S., Lavanya, D.R., & Umamaheswara, R.D.C. (2018). Exploring the therapeutic potential and nutritional properties of ‘KaruppuKavuni’ variety rice of Tamil Nadu. Int. J. Pharma Bio Sci., 9, 88–96.
Konczak, I. & Zhang, W. (2004). Anthocyanins—more than nature’s colours. J. Biomed. Biotechnol., 239–240.
Yazhen, S., Wenju, W., Panpan, Z., Yuanyuan, Y., Panpan, D., Wusen, Z. & Yanling, W. (2019). Anthocyanins: Novel Antioxidants in Diseases Prevention and Human Health. In Flavonoids-A Coloring Model for Cheering Up Life; IntechOpen: London, UK.
Kocic, B., Filipovic, S., Nikolic, M. & Petrovic, B. (2011). Effects of anthocyanins and anthocyanin-rich extracts on the risk for cancers of the gastrointestinal tract. Off. J. Balk. Union Oncol., 16, 602–608.
Woo, D.S., Jun, Y.K., Mi, J.P., Sang-Ik, H., Hang, W.K., Ji-Eun, R., Sea, K.O., Jin, H.L., Ki, C.J., & You, C.S. (2011). Relationship of Radical Scavenging Activities and Anthocyanin Contents in the 12 Colored Rice Varieties in Korea. J Korean Soc Appl Bi, 54, 693-699.
Chen, P.N., Chu, S.C., Chiou, H.L., Chiang, C.L., Yang, S.F. & Hsieh, Y. (2005). Cancer, Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. J. Nutr., 53, 232–243.
Luo, L.P., Han, B., Yu, X.P., Chen, X.Y., Zhou, J., Chen, W., Zhu, Y.F., Peng, X.L., Zou, Q., & Li, S.Y. (2014). Anti-metastasis activity of black rice anthocyanins against breast cancer: Analyses using an ErbB2 positive breast cancer cell line and tumoral xenograft model. Asian Pac. J. Cancer Prev., 15, 6219–6225.
Umar Lule, S. & Xia, W.J.F.R.I. (2005). Food phenolics, pros and cons: A review. J. Food Rev. Int., 21, 367–388.
Xia, D., Zhou, H., Li, P., Wu, B., Zhang, Q., & He, Y. (2020). How rice organ painted: the genetic basis of anthocyanin biosynthesis in rice. Research Square. Doi: 10.21203/rs.3.rs-101298/v1
Dooner, H.K., Robbins, T.P. & Jorgensen, R.A. (1991). Genetics and development control of anthocyanin biosynthesis. Annu Rev Genet., 25, 173–199.
Kootstra, A. (1994). Protection from UV-B-induced DNA damage by flavonoids. Plant Mol. Biol. 26, 771–774.
Reddy, V.S., Goud, K.V., Sharma, R., & Reddy, A.R. (1994). Ultraviolet-B-responsive anthocyanin production in a rice cultivar is associated with a specific phase of phenylalanine ammonia lyase biosynthesis. Plant Physiol., 105, 1059–1066.
Holton, T.A., & Cornish, E.C. (1995). Genetics and Biochemistry of Anthocyanin Biosynthesis. The Plant Cell, 7, 1071-1083.
Dixon, R.A. & Paiva, N. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097.
Shirley, B.W. (1996). Flavonoid biosynthesis: new functions for an old pathway. Trends Plant Sci. 1, 377–382.
Chalker-Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol., 70, 1–9.
Shirley, W.B. (2002). Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol., 5, 218–223.
Dwiningsih, Y. & Notosoedarmo, S. (2008). Chlorophyll and Carotenoid in C4, C3, and CAM plants. Indonesian Scientific Research Olympic.
Reddy, C.K., Kimi, L., Haripriya, S., & Kang, N. (2017). Effects of polishing on proximate composition, physico-chemical characteristics, mineral composition and antioxidant properties of pigmented rice. Rice Sci., 24, 241–252.
Zhang, H., Shao, Y., Bao, J., & Beta, T. (2015). Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chem., 172, 630–639.
Maqsood, A., Khan, Z.I., Ahmad, K., Akhtar, S., Ashfaq, A., Malik, I.S., Sultana, R., Nadeem, M., Alkahtani, J., Dwiningsih, Y., & Elshikh, M. (2022). Quantitative evaluation of zinc metal in meadows and ruminants for health assessment: implications for humans. Environmental Science and Pollution Research, 29, 21634–21641. Doi: 10.1007/s11356-021-17264-1
Ge, X., Khan, Z.I., Chen, F., Akhtar, M., Ahmad, K., Ejaz, A., Ashraf, M.A., Nadeem, M., Akhtar, S., Alkahtani, J., Dwiningsih, Y., & Elshikh, M.S. (2021). A study on the contamination assessment, health risk and mobility of two heavy metals in the soil-plants-ruminants system of a typical agricultural region in the semi arid environment. Environmental Science and Pollution Research, 29, 14584–14594. Doi: 10.1007/s11356-021-16756-4
Dwiningsih, Y., Kumar, A., Thomas, J., Ruiz, C., Alkahtani, J., Al-Hashimi, A., & Pereira, A. (2021). Identification of Genomic Regions Controlling Chalkiness and Grain Characteristics in a Recombinant Inbred Line Rice Population Based on High-Throughput SNP Markers. Genes, 12, 1690. Doi: 10.3390/genes12111690
Clifford, M. N. (2000). Anthocyanins: Nature, occurrence and dietary burden. J. Sci. Food Agric., 80, 1063-1072.
Mackon, E., Jeazet Dongho Epse Mackon, G.C., Ma, Y., Haneef Kashif, M., Ali, N., Usman, B., & Liu, P. (2021). Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice (Oryza sativa L.) Caryopsis. Biomolecules, 11, 394. Doi: 10.3390/biom11030394
Xu, T., Sun, J., Chang, H., Zheng, H., Wang, J., Liu, H., Yang, L., Zhao, H., & Zou, D.T. (2017). QTL mapping for anthocyanin and proanthocyanidin content in red rice. Euphytica, 213, 243.
Dwiningsih, Y. & Notosoedarmo, S. (2012). Rice contained carotenoid. Indonesian Scientific Research Olympic.
Escribano-Bailón, M.T., Santos-Buelga, C., & Rivas-Gonzalo, J.C. (2004). Anthocyanins in cereals. Journal of Chromatography A 054, 129e141.
Abdel-Aal, E.S.M., Young, J.C., & Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54, 4696–4704.
Reddy, V.S., Dash, S., & Reddy, A.R. (1995). Anthocyanin pathway in rice (Oryza sativa L.): identification of a mutant showing dominant inhibition of anthocaynins in leaf and accumulation of proanthocaynidins in pericarp. Theor Appl Genet., 91, 301–312.
Sakamoto, W., Ohmori, T., Kageyama, K., Miyazaki, C., Saito, A., Murata, M., Noda, K., & Maekawa, M. (2001). The purple leaf (Pl) locus of rice: the Plw allele has a complex organization and includes two genes encoding basic helix-loophelix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol., 42, 982–991.
Chin, H., Wu, Y., Hour, A., Hong, C., & Lin, Y. (2016). Genetic and evolutionary analysis of purple leaf sheath in rice. Rice, 9, 1, 8. Doi: 10.1186/s12284-016- 0080-y
Dwiningsih, Y., Kumar, A., Thomas, J., Gupta, C., Ruiz, C., Alkahtani, J., Baisakh, N., & Pereira, A. (2021). Identification and expression of abscisic acid-regulated genes in US RIL rice population under drought conditions. 82nd Meeting of Southern Section of the American Society of Plant Biologists.
Goffman, F.D. & Bergman, C.J. (2004). Rice kernel phenolic content and its relationship with antiradical efficiency. J Sci Food Agric, 84, 1235-1240. Doi: 10.1002/jsfa.1780
Chen, X.Q., Nagao, N., Itani, T., & Irifune. (2012). Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chemistry. 135, 2783-2788. Doi: 10.1016/j.foodchem.2012.06.098
Koes, R., Verweij, W., & Quattrocchio, F. (2005). Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci., 10, 1360–1385.
Brenda, W.S. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol., 126, 485–493.
Loypimai, P., Moongngarm, A., & Chottanom, P. (2016). Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. Journal of Food Science and Technology, 53, 1, 461–470.
Zhang, Y., Hu, X. S., Chen, F., Wu, J. H., Liao, X. J., & Wang, Z. F. (2008). Stability and color characteristics of PET-treated cyanidin-3-glucoside during storage. Food Chemistry, 106, 2, 669–676.
Tiwari, B.K., O' Donnell, C.P., Muthukumarappan, K., & Cullen, P.J. (2009). Anthocyanin and color degradation in ozone treated blackberry juice. Innovative Food Science and Emerging Technologies, 10, 1, 70–75.
Gradinaru, G., Biliaderis, C. G., Kallithraka, S., Kefalas, P., & Garcia-Viguera, C. (2003). Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: Effects of copigmentation and glass transition. Food Chemistry, 83, 3, 423–436.
Dwiningsih, Y., Kumar, A., Thomas, J., Yingling, S., & Pereira, A. (2020). Identification of QTLs associated with drought resistance traits at reproductive stage in K/Z RILs rice population. 5th Annual Meeting of the Arkansas Bioinformatics Consortium AR-BIC 2020, Bioinformatics in Food and Agriculture.
Dwiningsih, Y. (2013). Thermostability of natural pigment from secang bark (Caesalpillia sappan Linn.). Indonesian Scientific Research Olympic.
Hou, Z., Qing, P., & Ren, G., (2010). Effect of anthocyanin-rich extract from black rice (Oryza sativa L. Japonica) on chronically alcohol-induced liver damage in rats. Journal of Agricultural and Food Chemistry 58, 3191e3196.
Shipp, J. & Abdel-Aal. (2010). Food Applications and Physiological Effects of Anthocyanins as Functional Food Ingredients. The Open Food Science Journal, 4, 7-22.
Tian, Q. G., Giusti, M. M., Stoner, G. D., & Schwartz, S. J. (2005). Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring. Journal of Chromatography A, 1091, 72–82.
Yao, Y., Sang, W., Zhou, M. J., & Ren, G. X. (2010). Antioxidant and a-glucosidase activity of colored grains in China. Journal of Agricultural and Food Chemistry, 58, 770–774.
Lee, J.H. (2010). Identifications and quantification of anthocyanins from the grains of black rice (Oryza sativa L.) varieties. Food Science and Biotechnology, 19, 391e397.
Hiemori, M., Koh, E., & Mitchell, A.E. (2009). Influence of cooking on anthocyanins in black rice (Oryza sativa L. japonica var. SBR). J. Agric. Food Chem, 57, 1908-1914. Doi: 10.1021/jf803153z
Yoshida, H., Tomiyama, Y., & Mizushina, Y. (2010). Lipid components, fatty acids and triacylglycerol molecular species of black and red rices. Food Chemistry, 123, 210e215.
Kong, L., Wang, Y., & Cao, Y. (2008). Determination of Myo-inositol and D-chiroinositol in black rice bran by capillary electrophoresis with electrochemical detection. Journal of food composition and analysis, 21, 6, 501-504.
Han, S.J., Ryu, S.N., & Kang, S.S. (2004). A New 2-Arylbenzofuran with Antioxidant Activity from the Black Colored Rice (Oryza sativa L.) Bran. Chem. Pharm. Bull, 52, 11, 1365-1366.
Dwiningsih, Y. & Notosoedarmo, S. (2012). Rice contained carotenoid. Indonesian Scientific Research Olympic.
Kushwaha, U. K. S. (2016). Black Rice: Research History and Development. Springer International Publishing, 21–31.
Surh, J., & Koh, E. (2014). Effects of four different cooking methods on anthocyanins, total phenolics and antioxidant activity of black rice. Journal of the Science of Food and Agriculture, 94, 15, 3296–3304.
Dwiningsih, Y. & Notosoedarmo, S. (2012). Potential of green microalgae (Haematococcus pluvialis) as food supplement. Indonesian Scientific Research Olympic.
Duyi, S., Baran, A., & Chandra, D. S. (2017). Pigmented rice a potential source of bioactive compounds: A review. International Journal of Food Science & Technology, 52, 5, 1073–1081.
Jeng, T. L., Lai, C. C., Ho, P. T., Shih, Y. J., & Sung, J. M. (2012). Agronomic, molecular and antioxidative characterization of red- and purple-pericarp rice (Oryza sativa L.) mutants in Taiwan. Journal of Cereal Science, 56, 2, 425–431.
Dwiningsih, Y., Thomas, J., Kumar, A., Gupta, C., Ruiz, C., Yingling, S., Crowley, E., & Pereira, A. (2020). Molecular genetic analysis of drought resistance and productivity mechanisms in rice. Plant and Animal Genome XXVIII Conference, January 11-15, 2020.
Kim, M., Kim, H., Koh, K., Kim, H., Lee, Y.S., & Kim, Y.H. (2008). Identification and quantification of anthocyanin pigments in colored rice. Nutrition Research and Practice, 2, 1, 46-49.
Mbanjo, E.G.N., Kretzschmar, T., Jones, H., Ereful, N., Blanchard, C., Boyd, L.A., & Sreenivasulu, N. (2020). The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front. Genet., 11, 229. Doi: 10.3389/fgene.2020.00229
Hurtada, W.A., Barrion, A.S.A., & Nguyen-Orca, M.F.R. (2018). Mineral content of dehulled and well-milled pigmented and non-pigmented rice varieties in the Philippines. Int. Food Res. J., 25, 2063–2067.
Shao, Y., Hu, Z., Yu, Y., Mou, R., Zhu, Z., & Beta, T. (2018). Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry, 239, 733–741.
Raghuvanshi, R.S., Dutta, A., Tewari, G., &Suri, S. (2017). Qualitative characteristics of red rice and white rice procured from local market of Uttarakhand?: a comparative study. J. Rice Res., 10, 49–53.
Hashmi, M.I. & Tianlin, J.S. (2016). Minerals contents of some indigenous rice varieties of Sabah Malaysia. Int. J. Agric. For. Plant., 2, 31–34.
Dwiningsih, Y., Kumar, A., Thomas, J., Yingling, S., & Pereira A. (2019). Molecular genetic analysis of drought resistance and productivity in K/Z RIL rice population. Arkansas Bioinformatics Consortium 2019.
Frank, T., Reichardt, B., Shu, Q., & Engel, K. (2012). Metabolite profiling of colored rice (Oryza sativa L.) grains. Journal of Cereal Sciences 55, 112-119. Doi:10.1016/j.jcs.2011.09.009
Morimitsu, Y., Kubota, K., Tashiro, T., Hashizume, E., Kamiya, T., & Osawa, T. (2002). Inhibitory effect of anthocyanins and colored rice on diabetic cataract formation in the rat lenses. International Congress Series 1245, 503-508.
Frei, M. & Becker, K. (2005). Fatty acids and all-trans-β-carotene are correlated in differently colored rice landraces. J Sci Food Agric, 85, 2380-2384. Doi: 10.1002/jsfa.2263
Kim, J.Y., Do, M.H., & Lee, S.S. (2006). The effects of a mixture of brown and black rice on lipid profiles and antioxidant status in rats. Annals of Nutrition and Metabolism, 50, 347e353.
Dwiningsih, Y. (2014). Production of secang bark (Caesalpillia sappan Linn.) as natural pigment for food with spray drying method. Indonesian Scientific Research Olympic.
Hou, Z., Qin, P., Zhang, Y., Cui, S., & Ren, G. (2013). Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Research International, 50, 2, 691–697.
Dwiningsih, Y., Thomas, J., Kumar, A., Gupta, C., Crowley, E., Ruiz, C., & Pereira, A. (2019). Drought stress response in US recombinant inbred line of rice population. National Science Foundation (NSF) 26th National Conference 2019, 26, 76, 127.
Ma, J., Li, Y., & Li, J. (2000). Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem., 48, 5220-5225.
Wrolstad, R.E. (2004). Anthocyanin pigments – bioactivity and coloring properties. J Food Sci., 69, C419-C425.
Stintzing, F.C. & Carle, R. (2004). Functional properties of anthocyanins and betalins in plants, food, and in human nutrition. Trends Food Sci Technol., 15, 19-38.
Ali, M.H., Khan, M.I., Bashir, S., Azam, M., Naveed, M., Qadri, R., Bashir, S., Mehmood, F., Shoukat, M.A., & Li, Y. (2021). Biochar and Bacillus sp. MN54 Assisted Phytoremediation of Diesel and Plant Growth Promotion of Maize in Hydrocarbons Contaminated Soil. Agronomy, 11, 1795. Doi: 10.3390/agronomy11091795
Khoo, H.E., Azlan, A., Tang, S.T., Lim, S.M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 61, 1361779.
Turturică, M., Oancea, A.M., Râpeanu, G., & Bahrim, G. (2015). Anthocyanins: Naturally occuring fruit pigments with functional properties. Ann. Univ. Dunarea Jos Galati Fascicle VI-Food Technol., 39, 9–24.
Holton, T.A. & Cornish, E.C. (1995). Genetics and Biochemistry of Anthocyanin Biosynthesis. The Plant Cell, 7, 1071-1083.
Zhang, M.W., Zhang, R.F., Zhang, F.X., & Liu, R.H. (2010). Phenolic Profiles and Antioxidant Activity of Black Rice Bran of Different Commercially Available Varieties. J. Agric. Food Chem., 58, 7580-7587. Doi: 10.1021/jf1007665
Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., & Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212–221.
Dwiningsih, Y. (2012). Spectroscopy and natural pigment structural determination. Natural Pigment Conference.
Dwiningsih, Y., Rondonuwu, F.S., & Martosupono, M. (2009). The role of curcumin in bacteriochlorophyll a activity. Satya Wacana Christian University, Salatiga, Jawa Tengah, Indonesia.
Rafael, A., Dwiningsih, Y., Tuririday, H., & Karwur, F.F. (2009). Natural colorant and biopsychology. Biopsychology: Improving the Quality of Life, First National Conference on Biopsychology, Gadjah Mada University, Yogyakarta, Indonesia.
Finocchiaro, F., Ferrari1, B., & Gianinetti1, A. (2010). A study of biodiversity of flavonoid content in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. Journal of Cereal Science, 51, 28e34.
Furukawa, T., Maekawa, M., Oki, T., Suda, I., Lida, S., Shimada, H., Takamure, I., & Kadowaki, K. (2006). The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant Journal 49, 91e102.
Chung, H.S. & Woo, W.S. (2001). A quinolone alkaloid with antioxidant activity from the aleurone layer of anthocyanin-pigmented rice. J. Nat. Prod., 64, 1579-1580.
Hyun, J.W. & Chung, H.S. (2004). Cyanidin and Malvidin from Oryza sativa cv. Heugjinjubyeo Mediate Cytotoxicity against Human Monocytic Leukemia Cells by Arrest of G2/M Phase and Induction of Apoptosis. J. Agric. Food Chem., 52, 2213-2217. Doi: 10.1021/jf030370h
Li, Y., Teng, F., Shi, F., Wang, L., & Chen, Z. (2017). Effects of high-temperature air fluidization (HTAF) on eating quality, digestibility, and antioxidant activity of black rice (Oryza sativa L.). Starch – Stärke, 69, 7–8, 1600274-n/a.
Laokuldilok, T. & Kanha, N. (2015). Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT – Food Science and Technology, 64, 1, 405–411.
Meng, L., Zhang, W., Wu, Z., Hui, A., Gao, H., Chen, P., & He, Y. (2018). Effect of pressure-soaking treatments on texture and retrogradation properties of black rice. LWT – Food Science and Technology, 93, 485–490.
Dwiningsih, Y., Kumar, A., Thomas, J., Yingling, S., & Pereira, A. (2019). Molecular genetic analysis of drought resistance and productivity in US rice cultivars. Plant and Animal Genome XXVII Conference (January 12-16, 2019).
Arbelaez, J.D., Moreno, L.T., Singh, N., Tung, C.W., Maron, L.G., Ospina, Y., et al. (2015). Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice. O. meridionalis and O. rufipogon, in a common recurrent parent, O. sativa cv. Curinga. Mol. Breed., 35, 81. Doi: 10.1007/s11032- 015-0276-7
Bhuiyan, M.A.R., Narimah, M.K., Rahim, H.A., Abdullah, M.Z. & Wickneswari, R. (2011). Transgressive variants for red pericarp grain with high yield potential derived from Oryza rufipogon×Oryza sativa: field evaluation, screening for blast disease, QTL validation and background marker analysis for agronomic traits. Field Crops Res., 121, 232–239. Doi: 10.1016/j.fcr.2010.12.012
Maeda, H., Yamaguchi, T., Omoteno, M., Takarada, T., Fujita, K., Murata, K., et al. (2014). Genetic dissection of black grain rice by the development of a near isogenic line. Breed. Sci. 64, 134–141. Doi: 10.1270/jsbbs.64.134
Rysbekova, A.B., Kazkeyev, D.T., Usenbekov, B.N., Mukhina, Z.M., Zhanbyrbaev, E.A., Sartbaeva, I. A., et al. (2017). Prebreeding selection of rice with colored pericarp based on genotyping Rc and Pb genes. Russ. J. Genet., 53, 49–58. Doi: 10.1134/s1022795416110119
Waiyawuththanapoom, P., Waiyawuththanapoom, W., & Tirastittam, P. (2015). Social media as a channel for Thailand’s Rice Berry Product. Int. J. Econ. Manag. Eng. 9, 904–907.
Gene Discovery Rice and Rice Science Center. (2017). Riceberry. Available online at: http://dna.kps.ku.ac.th/index.php/news-articles-rice-rsc-rgdu-knowledge/ rice-breeding-lab/riceberry-variety (accessed March 15, 2022).
Wickert, E., Schiocchet, M.A., Noldin, J.A., Raimondi, J.V., De Andrade, A., Scheuermann, K.K., et al. (2014). Exploring variability?: New Brazilian varieties SCS119 Rubi and SCS120 Onix for the specialty rices market. Open J. Genet. 4, 157–165. Doi: 10.4236/ojgen.2014.42016
Zhu, Q., Yu, S., Zeng, D., Liu, H., Wang, H., Yang, Z., Xie, X., Shen, R., Tan, J., Li, H., Zhao, X., Zhang, Q., Chen, Y., Guo, J., Chen, L., & Liu, Y.G. (2017). Development of "Purple Endosperm Rice" by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System. Mol Plant, 10, 918-929.
Gu, X.Y., Kianian, S.F., Hareland, G.A., Hoffer, B.L., & Foley, M.E. (2005). Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Thero Appl Genet., 110, 1108-1118.
Gu, X.Y., Foley, M.E., Horvath, D.P., Anderson, J.V., Feng, J., Zhang, L., Mowry, C.R., Ye, H., Suttle, J.C., Kadowaki, K., & Chen, Z. (2011). Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 189, 1515-1524.
Rahman, M.M., Lee, K.E., & Kang, S.G. (2016). Allelic Gene Interaction and Anthocyanin Biosynthesis of Purple Pericarp Trait for Yield Improvement in Black Rice. Journal of Life Science, 26, 6, 727-736. Doi: 10.5352/JLS.2016.26.6.727
Kim, B.G., Kim, J.H., Min, S.Y., Shin, K., Kim, J.H., Kim, H.Y., Ryu, S.N., & Ahn, J. (2007). Anthocyanin content in rice is related to expression levels of anthocyanin biosynthetic genes. J Plant Biol., 50, 156-160.
Ithal, N. & Reddy, A.R. (2004). Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci., 166, 1505-1513.
Gandikota, M., Kochko, D.A., Chen, L.L., Ithal, N., Fauquet, C., & Reddy, A.R. (2001). Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Mol Breeding, 7, 73-83.
Dwiningsih, Y., Thomas, J., Kumar, A., Gupta, C., Yingling, S., Basu, S., & Pereira, A. (2018). Circadian expression patterns of the HYR gene. Arkansas Bioinformatics Consortium 2018, 7, 11, 34.
Septiningsih, E.M., Trijatmiko, K.R., Moeljopawiro, S., & McCouch, S.R. (2003). Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Thero Appl Genet., 107, 1433-1441.
Shao, Y., Jin, L., Zhang, G., Lu, Y., Shen, Y., & Bao, J. (2011). Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Thero Appl Genet., 122, 1005-1016.
Wang, W.Y., Ding, H.F., Li, G.X., Jiang, M.S., Li, R.F., Liu, X., Zhang, Y., & Yao, F.Y. (2009). Delimitation of the PSH1(t) gene for rice purple leaf sheath to a 23.5 kb DNA fragment. Genome, 52, 268–274.
Wang, C.X. & Shu, Q.Y. (2007). Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chin Sci Bull., 52, 3097-3104.
Hu, J.P., Anderson, B., & Wessler, S.R. (1996). Isolation and Characterization Of Rice R Genes Evidence for Distinct Evolutionary Paths in Rice and Maize. Genetics, 142, 1021-1031.
Mathilde, A.C., Theresa, M.F., Yong, G.C., Sang, N.A., Julapark, C., WU, K.S., Xiao, J.H., Yu, Z.H., Pamela, C.R., Sandra, E.H., Gerard, S., Susan, R.M., & Steven, D.T. (1994). Saturated Molecular Map of the Rice Genome Based on an Interspecific Backcross Population. Genetics, 138, 1251-1274.
Oh, J.H., Lee, Y.J., Byeon, E.J., Kang, B.C., Kyeoung, D.S., & Kim, C.K. (2018). Whole-genome resequencing and transcriptomic analysis of genes regulating anthocyanin biosynthesis in black rice plants. 3 Biotech., 8, 115.
Peng, Z.M., Zhang, M.W., & Tu, J.M. (2004). Breeding and nutrient evaluation on three-lines and their combination of indica black glutinous rice hybrid. Acta Agronomica Sinica, 30, 342-347.
Yoon, H.H., Paik, Y.S., Kim, J.B., & Hahn, T.R. (1995). Identification of anthocyanidins from Korean pigmented rice. Agric. Chem. Biotechnol. 38, 581-583.
Rahman, M.M., Lee, K.E., & Kang, S.G. (2015). Studies on the effects of pericarp pigmentation on grain development and yield of black rice. Indian J. Genet. 75, 426-433.
Petroni, K. & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci., 181, 3, 219–229. Doi: 10.1016/j.plantsci.2011.05.009
Lin-Wang, K., Bolitho, K., Grafton, K., Kortstee, A., Karunairetnam, S., McGhie, T.K., Espley, R.V., Hellens, R.P., & Allan, A.C. (2010). An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol., 10, 1, 50. Doi: 10.1186/1471-2229-10-50
Dwiningsih, Y. (2010). Lichenes: pigmented pollution bioindicator. BioS Popular Biology Magazine. Satya Wacana Christian University.
Zhao, S., Wang, C., Ma, J., Wang, S., Tian, P., Wang, J., Cheng, Z., Zhang, X., Guo, X., & Lei, C. (2016). Map-based cloning and functional analysis of the chromogen gene C in rice (Oryza sativa L.). J Plant Biol., 59, 5, 496–505. Doi: 10.1007/ s12374-016-0227-9
Dwiningsih, Y. & Notosoedarmo, S. (2012). Carotenoid biosynthesis in the anther. Natural Pigment Conference.
Takahashi, M. (1957). Analysis on apiculus color genes essential to anthocyanin coloration in rice. J Fac Agr Hokkaido Univ., 50, 266–362.
Liu, X., Sun, X., Wang, W., Ding, H., Liu, W., Li, G., Jiang, M., Zhu, C., & Yao, F. (2012). Fine mapping of Pa-6 gene for purple apiculus in rice. J. Plant. Biol., 55, 218–225.
Fan, F.J., Fan, Y.Y., Du, J.H., & Zhuang, J.Y. (2008). Fine Mapping of C (Chromogen for Anthocyanin) Gene in Rice. Rice Science, 15, 1-6.
Chen, Z., Deng, W., Li, F., Zhou, J., Li, J., Xu, P., Deng, X., Hu, F., Wang, L., Chen, S., et al. (2010). A genetic study on the purple stigma genes and their locations in Oryza longistaminata. J. Yunnan Univ.-Nat. Sci. Ed., 32, 103–107.
Meng, L., Qi, C., Wang, C., Wang, S., Zhou, C., Ren, Y., Cheng, Z., Zhang, X., Guo, X., Zhao, Z., Wang, J., Lin, Q., Zhu, S., Wang, H., Wang, Z., Lei, C., & Wan, J. (2021). Determinant Factors and Regulatory Systems for Anthocyanin Biosynthesis in Rice Apiculi and Stigmas. Rice, 14, 37. Doi: 10.1186/s12284-021-00480-1
Zheng, J., Wu, H., Zhu, H., Huang, C., Liu, C., Chang, Y., Kong, Z., Zhou, Z., Wang, G., Lin, Y., & Chen, H. (2019). Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytol., 223, 2, 705–721. Doi: 10.1111/nph.15807
Chen, C., Wu, W., Sun, X., Li, B., Hu, G., Zhang, Q., Li, J., Zhang, H.,& Li, Z. (2014). Fine-mapping and candidate gene analysis of BLACK HULL1 in rice (Oryza sativa L.). J. Plant Omics., 7, 12.
Gao, J., Dai, G., Zhou, W., Liang, H., Huang, J., Qing, D., Chen, W., Wu, H., Yang, X., Li, D.J., et al. (2019). Mapping and identifying a candidate gene Plr4, a recessive gene regulating purple leaf in rice, by using bulked segregant and transcriptome analysis with next-generation sequencing. Int. J. Mol. Sci., 20, 4335.
Reddy, K.R., Kakani, V.G., Zhao, D., Koti, S., & Gao, W. (2004). Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance. Photochem Photobiol., 79, 416–427.
Dwiningsih, Y., Mangimbulude, J. & Krave, A.S. (2007). Leachate denitrification activity from Semarang Jatibarang landfill. Satya Wacana Christian University, Salatiga, Jawa Tengah, Indonesia.
Gao, D., He, B., Zhou, Y., & Sun, L. (2011). Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. Plant Cell Reports, 30, 901-911.
Chin, H., Wu, Y., Hour, A., Hong, C., & Lin, Y. (2016). Genetic and evolutionary analysis of purple leaf sheath in rice. Rice, 9, 1, 8. Doi: 10.1186/s12284-016- 0080-y
Procissi, A., Dolfini, S., Ronchi, A., & Tonelli, C. (1997). Light-dependent spatial and temporal expression of regulatory genes in developing maize seeds. Plant Cell, 9, 1547–1557.
Yue, B., Cui, K.H., Yu, S.B., Xue, W.Y., Luo, L.J., & Xing, Y.Z. (2006). Molecular marker-assisted dissection of quantitative trait loci for seven morphological traits in rice (Oryza sativa L.). Euphytica, 150, 131–139.
Hadagal, B.N., Manjunath, A., & Goud, J.V. (1980). Linkage of genes for anthocyanin pigmentation in rice (Oryza sativa L.). Euphytica, 30, 747–754.
Lee, S., Kim, J., Jeong, S., Kim, D., Ha, J., Nam, K., & Ahn, D. (2003). Effect of Far-Infrared Radiation on the Antioxidant Activity of Rice Hulls. J. Agric. Food Chem, 51, 4400-4403. Doi: 10.1021/jf0300285
Simmons, D. & Williams, R. (1997). Dietary practices among Europeans and different South Asian groups in Coventry. Br. J. Nutr., 78, 5-14.
Sun, X., Zhang, Z., Chen, C., Wu, W., Ren, N., Jang, C., Yu, J., Zhao, Y., Zheng, X., Yang, Q., Zhang, H., Li, J., & Li, Z. (2018). The C–S–A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. Journal of Experimental Botany, 69, 7, 1485-1498. Doi: 10.1093/jxb/ery001
Li, X., Sun, L., Tan, L., Liu, F., Zhu, Z., Fu, Y., Sun, X., Sun, X., Xie, D., & Sun, C. (2012). TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Mol Biol, 78, 351-359. Doi: 10.1007/s11103-011-9868-8
Weng, J.F., Gu, S.H., Wan, X.Y. et al. (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res., 18, 1199–1209.
Shomura, A., Izawa, T., Ebana, K., Ebitani, T., Kanegae, H., Konishi, S., & Yano, M. (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet., 40, 1023–1028.
Song, X.J., Huang, W., Shi, M., Zhu, M.Z., & Lin, H.X. (2007). A QTL for rice grain width and weight encodes a previously unknown RINGtype E3 ubiquitin ligase. Nat Genet., 39, 623–630.
Fan, C.C., Xing, Y.Z., Mao, H.L., Lu, T.T., Han, B., Xu, C.G., Li, X.H., & Zhang, Q.F. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet., 112, 1164–1171.
Dwiningsih, Y., Kumar, A., Thomas, J., & Pereira, A. (2017). Identification drought-tolerance rice variety for reducing climatic impacts on rice production. Fulbright Enrichment Seminar Climate Change, Estes Park, Colorado, USA.
Zhu, B., Si, L., Wang, Z., Zhou, Y., Zhu, J., Shangguan, Y., Lu, D., Fan, D., Li, C., Lin, H., Qian, Q., Sang, T., Zhou, B., Minobe, Y., & Han, B. (2011). Genetic Control of a Transition from Black to Straw-White Seed Hull in Rice Domestication. Plant Physiology, 155, 1301-1311. Doi: 10.1104/pp.110.168500
Baek., J.A., Chung, N.J., Choi, K.C., Hwang, J.M., & Lee, J.C. (2015). Hull extracts from pigmented rice exert antioxidant effects associated with total flavonoid contents and induce apoptosis in human cancer cells. Food Sci Biotechnol., 24, 241-247.
Chen, W., Gao, Y.Q., Xie, W.B., Gong, L., Lu, K., Wang, W.S., Li, Y., Liu, X.Q., Zhang, H.Y., Dong, H.X., Zhang, W., Zhang, L.J., Yu, S., Wang, G.W., Lian, X.M., & Luo, J. (2014). Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet., 46, 714-721.
Yu, Y., Tang, T., Qian, Q., Wang, Y., Yan, M., Zeng, D., Han, B., Wu, C.I., Shi, S., & Li, J. (2008). Independent losses of function in a polyphenol oxidase in rice: differentiation in grain discoloration between subspecies and the role of positive selection under domestication. Plant Cell, 20, 2946–2959.
Kuriyama, H. & Kudo, M. (1967). Complementary genes Ph and Bh controlling ripening black coloration of rice hulls and their geographical distribution. Jpn J Breed., 17, 13–19.
Maekawa, M. (1984). Geographical distribution of the genes for black hull coloration. Rice Genet Newsl, 1, 104–105.
DOI: https://doi.org/10.26877/asset.v4i1.11659
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Advance Sustainable Science, Engineering and Technology (ASSET)
E-ISSN: 2715-4211
Published by Science and Technology Research Centre
Universitas PGRI Semarang, Indonesia
Website: http://journal.upgris.ac.id/index.php/asset/index
Email: [email protected]