Optimizing Predictive Accuracy: A Study of K-Medoids and Backpropagation for MPX2 Oil Sales Forecasting

Ryan Akbar Ramadhan, Daniel Swanjaya, Risa Helilintar

Abstract


This study evaluates the use of K-Medoids and Backpropagation methods for predicting MPX2 Oil sales in the automotive workshop industry, which is crucial for meeting customer demands and refining sales strategies. Utilizing transaction data from 2022 to 2023, the study involves normalizing and processing this data with these algorithms to forecast stock levels, focusing on accuracy measures such as Mean Absolute Deviation (MAD) and Mean Squared Error (MSE). K-Medoids assist in identifying customer purchase patterns through clustering, while Backpropagation effectively predicts sales trends, enhancing accuracy through training. Implementing K-Medoids and Backpropagation algorithms in the research resulted in  MSE value of 0.01969 and  MAD value of 0.12200. These values indicate a high level of accuracy in the MPX2 Oil sales predictive model, as lower MSE and MAD values suggest greater accuracy and precision in forecasting. These findings provide valuable insights into the dynamics of MPX2 Oil sales, enabling companies to improve marketing strategies, transaction management, and inventory strategies.


Keywords


K-Medoids; Backpropagation; Sales Forecasting; Predictive Accuracy; MPX2 Oil Sales

Full Text:

PDF

References


N. S. Atmaja and D. Lianda, “Jaringan Syaraf Tiruan Menggunakan Metode Backpropagation Dalam Prediksi Persediaan Bahan Baku (Studi Kasus : Pt. Bintang Toba Lestari),” J. Inf. Interaktif, vol. 6, no. 3, 2021.

S. Nirmal, “Comparative study between k-means and k-medoids clustering algorithms,” Int. Res. J. Eng. Technol., vol. 839, no. 1, pp. 839–844, 2019, [Online]. Available: https://www.irjet.net/archives/V6/i3/IRJET-V6I3154.pdf

A. V. Ushakov and I. Vasilyev, “Near-optimal large-scale k-medoids clustering,” Inf. Sci. (Ny)., vol. 545, no. 1, pp. 344–362, 2021, doi: 10.1016/j.ins.2020.08.121.

S. Balakrishna, M. Thirumaran, R. Padmanaban, and V. K. Solanki, “An efficient incremental clustering based improved K-Medoids for IoT multivariate data cluster analysis,” Peer-to-Peer Netw. Appl., vol. 13, no. 4, pp. 1152–1175, 2020, doi: 10.1007/s12083-019-00852-x.

F. Rahman, I. I. Ridho, M. Muflih, S. Pratama, M. R. Raharjo, and A. P. Windarto, “Application of Data Mining Technique using K-Medoids in the case of Export of Crude Petroleum Materials to the Destination Country,” IOP Conf. Ser. Mater. Sci. Eng., vol. 835, no. 1, pp. 1–7, 2020, doi: 10.1088/1757-899X/835/1/012058.

H. Jiang, Y. Wu, K. Lyu, and H. Wang, “Ocean Data Anomaly Detection Algorithm Based on Improved k-medoids,” in 11th International Conference on Advanced Computational Intelligence, ICACI 2019, IEEE, 2019, pp. 196–201. doi: 10.1109/ICACI.2019.8778515.

W. Wei and X. Yang, “Comparison of Diagnosis Accuracy between a Backpropagation Artificial Neural Network Model and Linear Regression in Digestive Disease Patients: An Empirical Research,” Comput. Math. Methods Med., vol. 1, no. 1, pp. 1–10, 2021, doi: 10.1155/2021/6662779.

B. Dai, H. Gu, Y. Zhu, S. Chen, and E. F. Rodriguez, “On the Use of an Improved Artificial Fish Swarm Algorithm-Backpropagation Neural Network for Predicting Dam Deformation Behavior,” Complexity, vol. 1, no. 1, pp. 1–13, 2020, doi: 10.1155/2020/5463893.

M. Madhiarasan and M. Louzazni, “Analysis of Artificial Neural Network: Architecture, Types, and Forecasting Applications,” J. Electr. Comput. Eng., vol. 1, no. 1, pp. 1–23, 2022, doi: 10.1155/2022/5416722.

J. Veri, S. Surmayanti, and G. Guslendra, “Determination of Accuracy at Backpropagation Method in Prediction Crude Oil Prices,” SAR J. - Sci. Res., vol. 4, no. 4, pp. 181–184, 2021, doi: 10.18421/sar44-05.

A. Purwinarko and F. Amalia Langgundi, “Crude oil price prediction using Artificial Neural Network-Backpropagation (ANN-BP) and Particle Swarm Optimization (PSO) methods,” J. Soft Comput. Explor., vol. 4, no. 2, pp. 99–106, 2023, doi: 10.52465/joscex.v4i2.159.

R. Raeisi and A. Kabir, “Implementation of Artificial Neural Network on Sales Forecasting Application,” J. Intell. Decis. Support Syst., vol. 5, no. 4, pp. 124–131, 2022, [Online]. Available: http://ilin.asee.org/Conference2006program/Papers/Raeisi-P59.pdf

N. Z. M. Safar, A. A. Ramli, H. Mahdin, D. Ndzi, and K. M. N. K. Khalif, “Rain prediction using fuzzy rule based system in North-West Malaysia,” Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 3, pp. 1572–1581, 2019.

R. W. B. S. Berahmana, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 11, no. 1, p. 32, 2020, doi: 10.24843/lkjiti.2020.v11.i01.p04.

N. Caglayan, S. I. Satoglu, and E. N. Kapukaya, “Sales forecasting by artificial neural networks for the apparel retail chain stores,” in Advances in Intelligent Systems and Computing, Springer International Publishing, 2020, pp. 451–456. doi: 10.1007/978-3-030-23756-1_56.

S. Haque, “Retail Demand Forecasting Using Neural Networks and Macroeconomic Variables,” J. Math. Stat. Stud., vol. 1, no. 1, pp. 1–6, 2023, doi: 10.32996/jmss.

N. T. Nguyen, R. Chbeir, E. Exposito, and P. Aniorté, “An approach to imbalanced data classification based on instance selection and over-sampling,” in 11th International Conference, ICCCI 2019, 2019, pp. 601–610. doi: 10.1007/978-3-030-28377-3_50.

Y. F. Utami, G. Darmawan, and R. S. Pontoh, “Forecasting Electricity Sales Using the Artificial Neural Network Backpropagation Method,” Asian J. Appl. Educ., vol. 2, no. 4, pp. 581–594, 2023, [Online]. Available: https://journal.formosapublisher.org/index.php/ajae/article/view/6589




DOI: https://doi.org/10.26877/asset.v6i1.17665

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: [email protected]