The Effect of LAB Color Space with NASNetMobile Fine-tuning on Model Performance for Crowd Detection
Abstract
Full Text:
PDFReferences
J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in computer vision: A critical review of emerging techniques and application scenarios,” Machine Learning with Applications, vol. 6, p. 100134, Dec. 2021, doi: 10.1016/j.mlwa.2021.100134.
A. I. Pradana, “Deteksi Ketepatan Pengunaan Masker Wajah dengan Algoritma CNN dan Haar Cascade,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 3, pp. 2305–2316, Sep. 2022, doi: 10.35957/jatisi.v9i3.2912.
D. T. Laksono, I. N. Husna, M. Ulum, A. K. Saputro, M. F. Fahmi, and D. N. Purnamasari, “SISTEM DETEKSI DAN PERHITUNGAN JUMLAH MANUSIA DALAM RUANGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” Jurnal Simantec, vol. 11, no. 1, pp. 131–138, Dec. 2022, doi: 10.21107/simantec.v11i1.19745.
A. Fuadi and A. Suharso, “PERBANDINGAN ARSITEKTUR MOBILENET DAN NASNETMOBILE UNTUK KLASIFIKASI PENYAKIT PADA CITRA DAUN KENTANG,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 3, pp. 701–710, Aug. 2022, doi: 10.29100/jipi.v7i3.3026.
M. M. Ahsan, K. D. Gupta, M. M. Islam, S. Sen, Md. L. Rahman, and M. Shakhawat Hossain, “COVID-19 Symptoms Detection Based on NasNetMobile with Explainable AI Using Various Imaging Modalities,” Mach Learn Knowl Extr, vol. 2, no. 4, pp. 490–504, Oct. 2020, doi: 10.3390/make2040027.
P. Enkvetchakul and O. Surinta, “Effective Data Augmentation and Training Techniques for Improving Deep Learning in Plant Leaf Disease Recognition,” Applied Science and Engineering Progress, Jan. 2021, doi: 10.14416/j.asep.2021.01.003.
N. Thevarasa, G. Ananthajothy, R. Navaratnam, and M. B. Dissanayake, “Weighted Ensemble Algorithm for Aerial Imaging Based Mosquito Breeding Sites Classification,” in 2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS), IEEE, Aug. 2023, pp. 347–352. doi: 10.1109/ICIIS58898.2023.10253588.
S. N. Gowda and C. Yuan, “ColorNet: Investigating the Importance of Color Spaces for Image Classification,” 2019, pp. 581–596. doi: 10.1007/978-3-030-20870-7_36.
X. Shao et al., “Multi-Scale Feature Pyramid Network: A Heavily Occluded Pedestrian Detection Network Based on ResNet,” Sensors, vol. 21, no. 5, p. 1820, Mar. 2021, doi: 10.3390/s21051820.
S. Shao et al., “CrowdHuman: A Benchmark for Detecting Human in a Crowd,” Apr. 2018.
P. Langgeng, W. E. Putra, M. Naufal, and E. Y. Hidayat, “A Comparative Study of MobileNet Architecture Optimizer for Crowd Prediction,” Semarang 123 Jl. Imam Bonjol No, vol. 8, no. 3, p. 50131, 2023.
D. Alamsyah and D. Pratama, “Segmentasi Warna Citra Bunga Daisy dengan Algoritma K-Means pada Ruang Warna Lab,” Jurnal Buana Informatika, vol. 10, no. 2, Oct. 2019, doi:
24002/jbi.v10i2.2458.
B. Kaddar, H. Fizazi, M. Hernandez-Cabronero, V. Sanchez, and J. Serra-Sagrista, “DivNet: Efficient Convolutional Neural Network via Multilevel Hierarchical Architecture Design,” IEEE Access, vol. 9, pp. 105892–105901, 2021, doi: 10.1109/ACCESS.2021.3099952.
W. Sun, Q. Wei, L. Ren, J. Dang, and F.-F. Yin, “Adaptive respiratory signal prediction using dual multi-layer perceptron neural networks,” Phys Med Biol, vol. 65, no. 18, p. 185005, Sep. 2020, doi: 10.1088/1361-6560/abb170.
E. Belcore and V. Di Pietra, “LAYING THE FOUNDATION FOR AN ARTIFICIAL NEURAL NETWORK FOR PHOTOGRAMMETRIC RIVERINE BATHYMETRY,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLVIII-4/W1-2022, pp. 51–58, Aug. 2022, doi: 10.5194/isprs-archives-XLVIII-4-W1-2022-51-2022.
A. M. Javid, S. Das, M. Skoglund, and S. Chatterjee, “A ReLU Dense Layer to Improve the Performance of Neural Networks,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Jun. 2021, pp. 2810–2814. doi: 10.1109/ICASSP39728.2021.9414269.
C. Fang, H. He, Q. Long, and W. J. Su, “Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training,” Proceedings of the National Academy of Sciences, vol. 118, no. 43, Oct. 2021, doi: 10.1073/pnas.2103091118.
X. Wang, H. Ren, and A. Wang, “Smish: A Novel Activation Function for Deep Learning Methods,” Electronics (Basel), vol. 11, no. 4, p. 540, Feb. 2022, doi: 10.3390/electronics11040540.
DOI: https://doi.org/10.26877/asset.v6i1.17821
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Advance Sustainable Science, Engineering and Technology (ASSET)
E-ISSN: 2715-4211
Published by Science and Technology Research Centre
Universitas PGRI Semarang, Indonesia
Website: http://journal.upgris.ac.id/index.php/asset/index
Email: [email protected]