Wildfire Risk Map Based on DBSCAN Clustering and Cluster Density Evaluation

Muchamad Taufiq Anwar, Wiwien Hadikurniawati, Edy Winarno, Aji Supriyanto

Abstract


Wildfire risk analysis can be based on historical data of fire hotspot occurrence. Traditional wildfire risk analyses often rely on the use of administrative or grid polygons which has their own limitations. This research aims to develop a wildfire risk map by implementing DBSCAN clustering method to identify areas with wildfire risk based on historical data of wildfire hotspot occurrence points. The risk ranks for each area/cluster were then ranked/calculated based on the cluster density. The result showed that this method is capable of detecting major clusters/areas with their respective wildfire risk and that the majority of consequent fire occurrences were repeated inside the identified clusters/areas.

Keywords: wildfire risk map; clustering; DBSCAN; cluster density;


Full Text:

PDF

References


Han, H., & Shu, X. (2017). A Self-Adjusting Approach to Identify Hotspots. International Review for Spatial Planning and Sustainable Development, 5(2), 104-112.

Price, O., Borah, R., Bradstock, R., & Penman, T. (2015). An empirical wildfire risk analysis: the probability of a fire spreading to the urban interface in Sydney, Australia. International Journal of Wildland Fire, 24(5), 597-606.

Ager, A. A., Preisler, H. K., Arca, B., Spano, D., & Salis, M. (2014). Wildfire risk estimation in the Mediterranean area. Environmetrics, 25(6), 384-396.

Lall, S., & Mathibela, B. (2016, December). The application of artificial neural networks for wildfire risk prediction. In 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA) (pp. 1-6). IEEE.

Farahmand, A., Reager, J. T., Behrangi, A., Stavros, E. N., & Randerson, J. T. (2017, December). Using NASA Satellite Observations to Map Wildfire Risk in the United States for Allocation of Fire Management Resources. In AGU Fall Meeting Abstracts.

Nami, M. H., Jaafari, A., Fallah, M., & Nabiuni, S. (2018). Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International journal of environmental science and technology, 15(2), 373-384.

Guo, F., Su, Z., Wang, G., Sun, L., Lin, F., & Liu, A. (2016). Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Applied Geography, 66, 12-21.

Mitri, G., Jazi, M., & McWethy, D. (2015). Assessment of wildfire risk in Lebanon using geographic object-based image analysis. Photogrammetric Engineering & Remote Sensing, 81(6), 499-506.

Amalina, P., Prasetyo, L. B., & Rushayati, S. B. (2016). Forest Fire Vulnerability Mapping in Way Kambas National Park. Procedia Environmental Sciences, 33, 239-252.

Nisa, K. K., Andrianto, H. A., & Mardhiyyah, R. (2014, October). Hotspot clustering using DBSCAN algorithm and shiny web framework. In 2014 International Conference on Advanced Computer Science and Information System (pp. 129-132). IEEE.

M. T. Anwar, H. D. Pumomo, S. Y. J. Prasetyo, and K. D. Hartomo, “Decision Tree Learning Approach To Wildfire Modeling on Peat and Non-Peat Land in Riau Province,” in 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2018, pp. 409–415.

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115.

Getis, A., & ORD, J. (1992). The analysis of spatial association by use of distance statistics Geographical Analysis 24 (3): 189–206.

Griffith, D., & Chun, Y. (2016). Spatial autocorrelation and uncertainty associated with remotely-sensed data. Remote Sensing, 8(7), 535.

Chou, Y. H., Minnich, R. A., Salazar, L. A., Power, J. D., & Dezzani, R. J. (1990). Spatial autocorrelation of wildfire distribution in the Idyllwild quadrangle, San Jacinto Mountain, California. Photogrammetric Engineering and Remote Sensing, 56(11), 1507-1513.

Koutsias, N., Allgöwer, B., & Conedera, M. (2002, November). What is common in wildland fire occurrence in Greece and Switzerland?–Statistics to study fire occurrence pattern. In Proceedings of the 4th International Conference on Forest Fire Research (pp. 18-23).

Portier, J., Gauthier, S., Robitaille, A., & Bergeron, Y. (2018). Accounting for spatial autocorrelation improves the estimation of climate, physical environment and vegetation’s effects on boreal forest’s burn rates. Landscape ecology, 33(1), 19-34.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd (Vol. 96, No. 34, pp. 226-231).

Vijayalaksmi, S., & Punithavalli, M. (2012). A fast approach to clustering datasets using dbscan and pruning algorithms. International Journal of Computer Applications, 60(14).

Pavlis, M., Dolega, L., & Singleton, A. (2018). A Modified DBSCAN Clustering Method to Estimate Retail Center Extent. Geographical Analysis, 50(2), 141-161.

Yuan, Z., & Li, H. (2016, June). Location recommendation algorithm based on temporal and geographical similarity in location-based social networks. In 2016 12th World Congress on Intelligent Control and Automation (WCICA) (pp. 1697-1702). IEEE.

Trifonov, G. M., Zhizhin, M. N., Melnikov, D. V., & Poyda, A. A. (2017). VIIRS Nightfire Remote Sensing Volcanoes. Procedia computer science, 119, 307-314.

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 19.

Berg, M. D., Cheong, O., Kreveld, M. V., & Overmars, M. (2008). Computational geometry: algorithms and applications. Springer-Verlag TELOS.

Calkin, D. E., Cohen, J. D., Finney, M. A., & Thompson, M. P. (2014). How risk management can prevent future wildfire disasters in the wildland-urban interface. Proceedings of the National Academy of Sciences, 111(2), 746-751.




DOI: https://doi.org/10.26877/asset.v1i1.4876

Refbacks

  • There are currently no refbacks.




SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: [email protected]