Comparing Optimizer Strategies For Enhancing Emotion Classification In IndoBERT Models
Abstract
Emotions are one of the reactions of human when they receive physical or verbal action. Every human action is based on emotion. Every opinion expressed in the comments column also contains the author's emotions. This research aims to classify five emotions, Marah, Takut, Senang, Cinta, and Sedih and evaluate the performance of three commonly used optimizer, Adam, RMSProp, and Nadam. The processed data used IndoBERT model for Indonesian text classification. The research purpose to search the best optimizer for text classification. The result shows classification used Adam Optimizer 90,21%, RMSProp Optimizer 82.11, and Nadam Optimizer 88.61%. The Adam optimizer applied to the IndoBERT model yielded the best results. This shows a significant improvement from previous studies, which had emotion classification.
Keywords
Full Text:
PDFReferences
A. Tusa Bagus, “KLASIFIKASI EMOSI PADA TEKS MENGGUNAKAN METODE DEEP LEARNING,” 2022.
R. D. Handayani, K. Kusrini, and H. Al Fatta, “Perbandingan Fitur Ekstraksi Untuk Klasifikasi Emosi Pada Sosial Media,” Jurnal Ilmiah SINUS, vol. 18, no. 2, p. 21, Jul. 2020, doi: 10.30646/sinus.v18i2.457.
A. S. Aribowo and S. Khomsah, “Implementation Of Text Mining For Emotion Detection Using The Lexicon Method (Case Study: Tweets About Covid-19) Implementasi Text Mining Untuk Deteksi Emosi Menggunakan Metode Leksikon (Studi Kasus: Twit Tentang Covid-19),” Jurnal Informatika dan Teknologi Informasi, vol. 18, no. 1, pp. 49–60, 2021, doi: 10.31515/telematika.v18i1.4341.
T. Shaik, X. Tao, C. Dann, H. Xie, Y. Li, and L. Galligan, “Sentiment analysis and opinion mining on educational data: A survey,” Natural Language Processing Journal, vol. 2, p. 100003, Mar. 2023, doi: 10.1016/j.nlp.2022.100003.
W. Zhang, X. Li, Y. Deng, L. Bing, and W. Lam, “A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges,” IEEE Trans Knowl Data Eng, vol. 35, no. 11, pp. 11019–11038, Nov. 2023, doi: 10.1109/TKDE.2022.3230975.
M. N. Hoda, Bharati Vidyapeeth’s Institute of Computers Applications and Management Delhi, and Institute of Electrical and Electronics Engineers Delhi Section, NLP & AI Speech Recognition: An Analytical Review. 2023.
Z. Li, Y. Wang, Y. Ji, and W. Yang, “A Survey of the Development of Artificial Intelligence Technology,” in 2020 3rd International Conference on Unmanned Systems (ICUS), IEEE, Nov. 2020, pp. 1126–1129. doi: 10.1109/ICUS50048.2020.9274952.
W. Hongyuan and D. Mingxing, “OVERVIEW OF THE DEVELOPMENT OF ARTIFICIAL INTELLIGENCE TECHNOLOGY,” Int J Res Eng Technol, vol. 07, no. 08, pp. 92–95, Aug. 2018, doi: 10.15623/ijret.2018.0708011.
M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif Intell Rev, vol. 55, no. 7, pp. 5731–5780, Oct. 2022, doi: 10.1007/s10462-022-10144-1.
Y. Yanfi, Y. Heryadi, L. Lukas, W. Suparta, and Y. Arifin, “Sentiment Analysis of User Review on Indonesian Food and Beverage Group using Machine Learning Techniques,” in 2022 IEEE Creative Communication and Innovative Technology (ICCIT), IEEE, Nov. 2022, pp. 1–5. doi: 10.1109/ICCIT55355.2022.10118707.
S. Saadah, Kaenova Mahendra Auditama, Ananda Affan Fattahila, Fendi Irfan Amorokhman, Annisa Aditsania, and Aniq Atiqi Rohmawati, “Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 648–655, Aug. 2022, doi: 10.29207/resti.v6i4.4215.
L. D. Cahya, A. Luthfiarta, J. I. T. Krisna, S. Winarno, and A. Nugraha, “Improving Multi-label Classification Performance on Imbalanced Datasets Through SMOTE Technique and Data Augmentation Using IndoBERT Model,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 9, no. 3, pp. 290–298, Jan. 2024, doi: 10.25077/TEKNOSI.v9i3.2023.290-298.
F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” Nov. 2020, [Online]. Available: http://arxiv.org/abs/2011.00677
P. Langgeng, W. E. Putra, M. Naufal, and E. Y. Hidayat, “A Comparative Study of MobileNet Architecture Optimizer for Crowd Prediction,” Semarang 123 Jl. Imam Bonjol No, vol. 8, no. 3, p. 50131, 2023.
K. Hulliyah, F. Rayyan, and N. S. A. A. Bakar, “Development Of A Chatbot For The Online Application Telegram Chat With An Approach To The Emotion Classification Text Using The Indobert-Lite Method,” in 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS), IEEE, Oct. 2022, pp. 1–4. doi: 10.1109/ICORIS56080.2022.10031483.
A. Wijaya, “Implementasi Model Neural Network IndoBERT untuk Klasifikasi Berita Ddifabel,” Universitas Multimedia Nusantara, Jakarta, 2021.
K. S. Nugroho and F. A. Bachtiar, “Text-Based Emotion Recognition in Indonesian Tweet using BERT,” in 2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, Dec. 2021, pp. 570–574. doi: 10.1109/ISRITI54043.2021.9702838.
J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” [Online]. Available: https://github.com/tensorflow/tensor2tensor
DOI: https://doi.org/10.26877/asset.v6i2.18228
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Advance Sustainable Science, Engineering and Technology (ASSET)
E-ISSN: 2715-4211
Published by Science and Technology Research Centre
Universitas PGRI Semarang, Indonesia
Website: http://journal.upgris.ac.id/index.php/asset/index
Email: [email protected]