Meta Insights: Analyzing Hero Performance in Mobile Legends with K-Nearest Neighbors
Abstract
This research presents a thorough statistical analysis of hero performance in the latest Mobile Legends meta, employing the K-Nearest Neighbor (KNN) algorithm. Utilizing diverse data sources, the study explores factors influencing hero success, leveraging KNN's ability to identify intricate patterns in complex datasets. Through meticulous data collection, preprocessing, and application of the KNN algorithm, the research classifies and predicts hero performance based on similarities with neighboring heroes. Critical determinants such as win rates, popularity, and hero ban rates emerge, providing profound insights into gameplay strategies. The study emphasizes the importance of understanding meta dynamics, hero attributes, and player expertise for informed decision-making in hero selection within the dynamic landscape of Mobile Legends.
Keywords
Full Text:
PDFReferences
M. Z. Mustamiin, “KONSELING INDIVIDU DENGAN SIKAP KECANDUAN GAME ONLINE MOBILE LEGEND PADA SISWA.”
M. Stmik and N. Mandiri, “Penerapan Algoritma K-Means Clustering pada Karakter Permainan Multiplayer Online Battle Arena,” JURNAL INFORMATIKA, vol. 6, no. 2, pp. 246–254, 2019, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji
W. Wang and R. Bierig, “Predicting Multiplayer Online Battle Arena (MOBA) Game Outcome Based on Hero Draft Data MSc Research Project Data Analytics”, [Online]. Available: https://steamdb.info/app/570/graphs/
S. Zhang, D. Cheng, Z. Deng, M. Zong, and X. Deng, “A novel kNN algorithm with data-driven k parameter computation,” Pattern Recognit Lett, vol. 109, pp. 44–54, Jul. 2018, doi: 10.1016/j.patrec.2017.09.036.
M. Mora-Cantallops and M. Á. Sicilia, “MOBA games: A literature review,” Entertain Comput, vol. 26, pp. 128–138, May 2018, doi: 10.1016/j.entcom.2018.02.005.
I. G. W. Sena and A. W. R. Emanuel, “MOBILE LEGEND GAME PREDICTION USING MACHINE LEARNING REGRESSION METHOD,” JURTEKSI (Jurnal Teknologi dan Sistem Informasi), vol. 9, no. 2, pp. 221–230, Mar. 2023, doi: 10.33330/jurteksi.v9i2.1866.
T. An, “CROSS-CULTURE IMPACT ON VIDEO GAME INDUSTRY Case study: Dota 2’s game design and player experience.”
C. S. Brunt, A. S. King, and J. T. King, “The influence of user-generated content on video game demand,” Journal of Cultural Economics, vol. 44, no. 1, pp. 35–56, Mar. 2020, doi: 10.1007/s10824-019-09349-0.
A. S. Chan, F. Fachrizal, and A. R. Lubis, “Outcome Prediction Using Naïve Bayes Algorithm in the Selection of Role Hero Mobile Legend,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jul. 2020. doi: 10.1088/1742-6596/1566/1/012041.
J. S. Raikwal and K. Saxena, “Performance Evaluation of SVM and K-Nearest Neighbor Algorithm over Medical Data set,” 2012.
R. L. Zhu, J. Wang, and S. J. Zhao, “Categorical Learning-based Line-up Prediction in the Drafting Process of MOBA Games,” Journal of Internet Technology, vol. 24, no. 2, pp. 411–419, Mar. 2023, doi: 10.53106/160792642023032402019.
S. Sahara, R. Agung Permana, U. Bina Sarana Informatika, and S. Antar Bangsa, “METODE KNN PADA SENTIMENT ANALISIS REVIEW PRODUK GAME ANDROID,” Online, 2022. [Online]. Available: www.zdnet.com
S. M. Listijo, T. Purwani, S. T. Galih, and T. Hafidzin, “PREDIKSI KEMENANGAN DAN SUSUNAN TIM PADA GAME MOBILE LEGENDS BANG BANG MENGGUNAKAN ALGORITMA NAÏVE BAYES.”
I. Fitriana and M. M. Rois, “Analysis of Metaphors Applied in Mobile Legends Game,” 2023.
R. L. Zhu, J. Wang, and S. J. Zhao, “Categorical Learning-based Line-up Prediction in the Drafting Process of MOBA Games,” Journal of Internet Technology, vol. 24, no. 2, pp. 411–419, Mar. 2023, doi: 10.53106/160792642023032402019.
D. Wicaksono Wiroto, N. Husain, H. Taan, and A. Malik Iskandar, “Cohesiveness as a Symbolic Power of Mobile Legends Online Game Community”, doi: 10.14710/jis.
I. Ketut, S. Yogatama, A. Putra Kharisma, and L. Fanani, “Analisis Faktor-Faktor Yang Memengaruhi Minat Pemain Dalam Permainan MOBA (Studi Kasus: Mobile Legends: Bang-Bang!),” 2019. [Online]. Available: http://j-ptiik.ub.ac.id
L. Hanke and L. Chaimowicz, “A Recommender System for Hero Line-Ups in MOBA Games.” [Online]. Available: www.aaai.org
Z. Ren, A. Liu, Y. Liang, J. Peng, and J. Ma, “Efficient Meta Reinforcement Learning for Preference-based Fast Adaptation.”
M. Suznjevic and M. Matijasevic, “Application Context Based Algorithm for Player Skill Evaluation in MOBA games.” [Online]. Available: http://forums.heroesofnewerth.com/showthread.php?562680-
DOI: https://doi.org/10.26877/asset.v6i2.18360
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Advance Sustainable Science, Engineering and Technology (ASSET)
E-ISSN: 2715-4211
Published by Science and Technology Research Centre
Universitas PGRI Semarang, Indonesia
Website: http://journal.upgris.ac.id/index.php/asset/index
Email: [email protected]