Pengaruh Proses Pengolahan terhadap Senyawa Bioaktif Sorgum dan Potensinya terhadap Kesehatan

Riski Ayu Anggreini, Nurul Azizah Choiriyah

Abstract


Sorgum sebagai salah satu bahan pangan dari golongan serealia, sangat potensial digunakan sebagai pangan fungsional yang nantinya digunakan untuk pencegahan penyakit kronis. Beberapa penelitian menyampaikan bahwa sorgum memiliki senyawa bioaktif diantaranya adalah senyawa fenolik yang terdiri dari asam fenolik, flavonoid, dan tanin. Kandungan senyawa bioaktif tersebut diduga berpotensi terhadap kesehatan, namun demikian jumlahnya dapat mengalami perubahan akibat proses pengolahan. Review ini bertujuan untuk memberikan informasi terkait manfaat sorgum khususnya pada kandungan senyawa bioaktifnya. Pengaruh proses pengolahan sorgum terhadap kandungan senyawa bioaktif dan potensinya bagi kesehatan. Perendaman, pengukusan, peerebusan, pemanasan kering menggunakan microwave, dan perkecambahan secara signifikan dapat menurunkan senyawa fenolik dan aktivitas antioksidan sorgum. Sementara, proses fermentasi dan iradiasi sinar gama dosis 2,0 kGy mampu meningkatkan kadar senyawa fenolik dan aktivitas antioksidan sorgum. Senyawa fenolik merupakan senyawa berkontontribusi untuk kesehatan tubuh manusia diantaranya untuk mencegah stres oksidatif, antidiabetes, antiobesitas, dan memiliki efek positif terhadap mikrobiota usus.

Keywords


senyawa bioaktif; fenolik; flavonoid; sorgum

Full Text:

PDF

References


Adamo, M., Capitani, D., Mannina, L., Cristinzio, M., Ragni, P., Tata, A., Coppola, R., 2004. Truffles decontamination treatment by ionizing radiation. Rad. Phys. Chem. 71, 167–170.

Amoako, D.B., Awika, J.M., 2016. Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule. Food Chem. 208, 10–17.

Awika, J.M., Dykes, L., Gu, L.W., Rooney, L.W., Prior, R.L., 2003. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agric. Food Chem. 51, 5516–5521

Awika, J.M., Rooney, L.W., Waniska, R.D., 2004. Properties of 3-deoxyanthocyanins from sorghum. J. Agr. Food Chem. 52, 4388–4394

Awika, J.M., Rooney, L.W., 2004. Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65, 1199–1221.

Awika, J.M., Yang, L., Browning, J.D., Faraj, A., 2009. Comparative anti

oxidant, antiproliferative and phase II enzyme inducing potential of sor

ghum (Sorghum bicolor) varieties. LWT - Food Sci. Technol. 42, 1041–1046.

Awika, J.M., Rose, D.J., Simsek, S., 2018. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food & function, 9, 1389–1409

Barros, F., Awika, J., Rooney, L.W., 2013. Effect of molecular weight

profile of sorghum proanthocyanidins on resistant starch formation. J.

Sci. Food Agr., 60(1): 172-179.

Bianco-Gomes, A.C., Nogueira, L.S., Bono-Lopes, N.V.M., Gouvêa-Souza, C.P., Boldrini-França, J., Gomes, V.M., Cherene, M.B., Alves, N.E.G., Vasconcelos, C.M., 2022.

Dry heat and pressure favor bioactive compounds preservation and peptides formation in sorghum [Sorghum bicolor (L.) Moench]. Current Research in Food Science, 5, 117-124.

Bralley, E., Greenspan, P., Hargrove, J.L., Hartle, D.K., 2008. Inhibi

tion of hyaluronidase activity by select sorghum brans. J. Med. Med.

Food, 11, 307–312.

Burdette, A., Garner, P.L., Mayer, E.P., Hargrove, J.L., Hartle, D.K.,

Greenspan, P., 2010. Anti-inflammatory activity of select sorghum

(Sorghum bicolor) brans. J. Med. Food, 13, 1–9.

Cardoso, M., Montini, T.A., Pinheiro, S.S., Queiroz, V.A., Pinheiro-Sant’Ana, H.M., Martino, H.S., Moreira, A.V., 2014. Effects of processing with dry heat and wet heat on the antioxidant profile of sorghum. Food Chemistry, 152, 210–217.

Cardoso, L.M., Pinheiro, S.S., Carvalho, C.W.P., Queiroz, V.A.V.,

Chiremba, C., Taylor, J.R.N., Rooney, L.W., Beta, T., 2012. Phenolic acid content of sorghum and maize cultivars varying in hardness. Food Chem., 134, 81–88.

Chung, I.M., Kim, E.H., Yeo, M.A., Kim, S.J., Seo, M.C., Moon, H.

I., 2011. Antidiabetic effects of three Korean sorghum phenolic

extracts in normal and streptozotocin-induced diabetic rats. Food Res.

Int., 44, 127–132.

Cardona, F., Andres-Lacueva, C., Tulipani, S., Tinahones, F.J.,

Queipo-Ortuno, M.I., 2013. Benefits of polyphenols on gut

microbiota and implications in human health. J. Nutr. Biochem., 24, 1415–1422.

Lewis, J.B., 2008. Effects of Bran from Sorghum Grains Containing Dif-

ferent Classes and Levels of Bioactive Compounds in Colon Carcinogenesis. USA: Texas A&M University

Menezes, C.B., Moreira, A.V.B., Barros, F.A.R., Awika, J.M.,

Martino, H.S.D., Pinheiro-Sant’Ana, H.M., 2015. Phenolic compounds profile in sorghum processed by extrusion cooking nd dry heat in a conventional oven. Journal of Cereal Science, 65, 220-226.

Martinez, I., Kim, J., Duffy, P.R., Schlegel, V.L., Walter, J., 2010.

Resistant starches types 2 and 4 have differential effects on the compo-

sition of the fecal microbiota in human subjects. PLoS ONE, 5, 1–11.

Moraes, E.A., Natal, D.I.G., Queiroz, V.A.V., Schaffert, R.E., Cecon, P.

R., de Paula, S.O., Benjamim, L.d.A., Ribeiro, S.M.R., Martino,

H.S.D., 2012. Sorghum genotype may reduce low-grade inflamma-

tory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Res. Int., 49, 553–559

Đorđević, T.M., Šiler-Marinković, S.S., Dimitrijević-Branković, S.I., 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry, 119(3), 957-963.

Dykes, L., Peterson, G.C., Rooney, W.L., Rooney, L.W., 2011. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem., 128, 173–179.

Ghaderi-Ghahfarrokhi, M., Sadeghi-Mahoonak, A.R., Alami, M., Khanegah, A.M., 2017. Effect of processing treatments on polyphenol removal from kernel of two Iranian acorns varieties. International Food Research Journal, 4(1), 86-93.

Girard, A.L., Bean, S.R., Tilley, M., Adrianos, S.L., Awika, J.M., 2018. Interaction mechanisms of condensed tannins (proanthocyanidins) with wheat gluten proteins. Food Chem., 245, 1154–1162

Hidalgo, M., Oruna-Concha, M.J., Kolida, S., Walton, G.E., Kallithraka,

S., Spencer, J.P.E., Gibson, G.R., de Pascual-Teresa, S., 2012.

Metabolism of anthocyanins by human gut microflora and their influ-

ence on gut bacterial growth. J. Agric. Food Chem., 60, 3882–3890.

Kim, J. and Park, Y., 2012. Anti-diabetic effect of sorghum extract on

hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr.Metabol., 9, 1–7.

Khoddami, A., Mohammadrezaei, M., Roberts, T.H., 2017. Effects of sorghum malting on colour, major classes of phenolics and

individual anthocyanins. Molecules, 22, 1713-1720.

Lee, K.Y., Yao, H., Bae, I.Y., Lee, H.G., 2012., Effect of Hydrocolloids on the Pasting and Rheological Characteristics of Resistant Starch (Type 4). Food Sci. Biotechnol., 21(3): 769-774. DOI 10.1007/s10068-012-0100-7.

Mitaru, B.N., Reichert, R.D., Blair, R., 1984. The binding of dietary protein by sorghum tannins in the digestive tract of pigs. J. Nutr., 114, 1787–1796

Mkandawire, N.L., Kaufman, R.C., Bean, S.R., Weller, C.L., Jackson, D.S., Rose, D.J., 2013. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on a-amylase activity and in vitro digestibility of starch in raw and processed flours. J. Agric. Food Chem., 61, 4448–4454.

Mohamed, L.K., Sulieman, M.A., Yagoub, A.E.A., Mohammed,

M.A., Alhuthayli, H.F., Mohamed Ahmed, I.A., Almaiman, S.A., Alfawaz, M.A., Osman, M.A., Hassan, A.B., 2022. Changes in Phytochemical Compounds and Antioxidant Activity of Two Irradiated Sorghum (Sorghum bicolor (L.) Monech) Cultivars during the Fermentation and Cooking of Traditional Sudanese Asida. Fermentation, 8, 60-70.

Pan, L., Ma, X., Hu, J., Liu, L., Yuan, M., Liu, L., Li, D., Piao, X., 2018. Low-tannin white sorghum contains more digestible and metabolisable energy than high-tannin red sorghum if fed to growing pigs. Anim. Prod. Sci.

Park, J.H., Lee, S.H., Chung, I.M., Park, Y. 2012. Sorghum extract

exerts an anti-diabetic effect by improving insulin sensitivity via

PPAR-g in mice fed a high-fat diet. Nutr. Res. Pract., 6, 322–327.

Paterson, A., Bowers, J., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., 2009. The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556

Suarni. 2016. Peranan sifat fisikokimia sorgum dalam diversifikasi pangan dan industry serta prospek pengembangannya. Jurnal Litbang Pertanian, 35(3), 99-110.

Sorour, M.A., Mehanni, A.E., Taha, E.M., Rashwan, A.K., 2017. Changes of Total Phenolics, Tannins, Phytate and Antioxidant Activity of Two

Sorghum Cultivars as Affected by Processing. Journal of Food and Dairy Science, 8(7), 267 - 274

Svensson, L., Sekwati-Monang, B., Lutz, D.L., Schieber, A., Gänzle, M.G., 2010. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J. Agric. Food Chem., 58, 9214–9220Yang 2012

Yang, L.Y., Browning, J.D., Awika, J.M., 2009. Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J. Agric. Food Chem., 57, 1797–1804.

Yang, L., Allred, K., Dykes, L., Allred, C., Awika, J., 2015. Enhanced action of apigenin and naringenin combination on estrogen receptor activation in non-malignant colonocytes: implications on sorghum-derived phytoestrogens. Food & Function, 6, 749–755

Variyar, P.S., Limaye, A., Sharma, A., 2004. Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). J. Agric. Food Chem., 52, 3385–3388

Wu, L., Huang, Z., Qin, P., Ren, G., 2013. Effects of processing on phytochemical profiles and biological activities for production of sorghum tea. Food Research International, 53, 678-685.




DOI: https://doi.org/10.26877/jiphp.v6i1.11980

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Ilmu Pangan dan Hasil Pertanian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
Jurnal Ilmu Pangan dan Hasil Pertanian by Universitas PGRI Semarang is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.