Deteksi Molekuler Mikroorganisme Patogen pada Bahan Pangan dengan Metode RT-PCR

Dyah Ayu Widyastuti

Abstract


Penyakit akibat makanan yang terkontaminasi oleh mikroorganisme
patogen menjadi salah satu ancaman kesehatan yang perlu diwaspadai.
Banyaknya jenis mikroorganisme patogen serta kecilnya jumlah sel yang
mengontaminasi bahan pangan menjadikan deteksi mikroorganisme patogen
dalam bahan pangan menjadi suatu tantangan tersendiri. Deteksi secara
konvensional melalui kultur mikroorganisme dalam media tertentu dianggap
kurang efektif karena memerlukan waktu yang relatif lama serta potensi
kontaminasinya yang cukup besar. Oleh karena itu, diperlukan metode deteksi
mikroorganisme patogen pada bahan pangan yang lebih cepat, efektif, spesifik,
dan sensitif untuk mencegah wabah penyakit akibat kontaminasi bahan pangan.
Deteksi molekuler banyak dikembangkan karena menyajikan hasil pengujian
yang lebih spesifik dan sensitif berdasarkan penanda molekuler tertentu. Salah
satu yang paling banyak dikembangkan adalah Real Time-Polymerase Chain
Reaction (RT-PCR) yang dapat mendeteksi materi genetik mikroorganisme
pengontaminasi makanan dengan menggunakan primer dan probe (penanda)
yang spesifik. Deteksi dengan RT-PCR memberikan hasil yang lebih spesifik dan
sensitif untuk mencegah penyebaran penyakit akibat bahan pangan yang
terkontaminasi mikroorganisme patogen.
Kata kunci: mikroorganisme, RT-PCR, patogen, primer, probe


Full Text:

PDF

References


Daftar Pustaka

Barnes, R. A. and P. L. White. 2016. PCR technology for detection of invasive

Aspergillosis. Journal of Fungi 2 (23): 1-9.

Billington, C., J. A. Hudson, and E. D’Sa. 2014. Prevention of bacterial foodborne

disease using nanobiotechnology. Nanotechnology, Science and

Applications (7): 73-83.

Bleve, G., L. Rizzotti, F. Dellaglio, and S. Torriani. 2003. Development of reverse

transcription (RT)-PCR and real-time RT-PCR assays for rapid detection

and quantification of viable yeasts and molds contaminating yogurts and

pasteurized food products. Applied and Environmental Microbiology 69 (7):

-4122.

Carleton, H. A. and P. Gerner-Smidt. 2016. Whole-genome sequencing is taking

over foodborne disease surveillance. Microbe 11 (7): 311-317.

Diederen, B. M. W., C. M. A. de Jong, F. Marmouk, J. A. W., Kluytmans, M. F.

Peeters, and A. V. der Zee. 2007. Evaluation of real-time PCR for the early

detection of Legionella pneumophila DNA in serum samples. Journal of

Medical Microbiology (56): 94-101.

Fricker, M., U.Messelhäuβer, U. Busch, S. Scherer, and M. Ehling-Schulz. 2007.

Diagnostic real-time PCR assays for the detection of emetic Bacillus

cereus strains in foods and recent food-borne outbreaks. Applied and

Environmental Microbiology 73 (6): 1892-1898.

GeneticID. 2016. Genetic analysis. Retrieved from

http://www.gmotesting.com/Testing-Options/Genetic-analysis.

Hanna, S. E., C. J. Connor, and H. H. Wang. 2005. Real-time polymerase chain

reaction for the food microbiologist: technologies, applications, and

limitations. Journal of Food Science 70 (3): 49-53.

Karus, A., F. Ceciliani, A. S. Bonastre, and V. Karus. 2017. Development of

simple multiplex real-time PCR assays for foodborne pathogens detection

and identification on lightcycler. Macedonian Veterinary Review 40 (1):

-58.

Levin, R. E. 2004. The application of real-time PCR to food and agricultural

systems: A review. Food Biotechnology 18 (1): 97-133.

Lin, Y. and Y. Lin. 2016. Recent developments in the molecular detection of

Fusarium oxysporum f. sp. cubense. Journal of Nature and Science 2 (10).

Malorny, B., E. Paccassoni, P. Fach, C. Bunge, A. Martin, and R. Helmuth. 2004.

Diagnostic real-time PCR for detection of Salmonella in food. Applied and

Environmental Microbiology 70 (12): 7046-7052.

Meade, B. D. and A. Bollen. 1994. Recommendations for use of the polymerase

chain reaction in the diagnosis of Bordetella pertussis infections. Journal of

Medical Microbiology (41): 51-55.

Nadkarni, M. A., F. E. Martin, N. A. Jacques, and N. Hunter. 2002. Determination

of bacterial load by real-time PCR using a broad-range (universal) probe

and primers set. Microbiology (148): 257-266.

Naravaneni, R. and K. Jamil. 2005. Rapid detection of food-borne pathogens by

using molecular techniques. Journal of Medical Microbiology (54): 51-54.

Phaneuf, C. R., B. Mangadu, M. E. Piccini, A. K. Singh, and C. Koh. 2016. Rapid,

portable, multiplexed detection of bacterial pathogens directly from clinical

sample matrices. Biosensors 6 (49): 1-10.

Vidic, J., M. Manzano, C. Chang, and N. Jaffrezic-Renault. 2017. Advanced

biosensors for detection of pathogens related to livestock and poultry.

Veterinary Research 48 (11): 1-22.

Vincart, B., R. D. Mendonça, S. Rottiers, F. Vermeulen, M. J. Struelens, and O.

Denis. 2007. A specific real-time PCR assay for the detection of Bordetella

pertussis. Journal of Medical Microbiology (56): 918-920.

Wellcome Genome Campus. 2015. What is PCR (polymerase chain reaction)?

Retrieved from

http://www.yourgenome.org/facts/what-is-pcr-polymerase-chain-reaction.

Zhao, X., C. Lin, J. Wang, and D. H. Oh. 2014. Advances in rapid detection

methods for foodborne pathogens. Journal of Microbiology and

Biotechnology 24 (3): 297-312.

Zhao, Y., H. Wang, P. Zhang, C. Sun, X. Wang, X. Wang, R. Yang, C. Wang, and

L. Zhou. 2016. Rapid multiplex detection of 10 foodborne pathogens wiyh

an up-converting phosphor technology-based 10-channel lateral flow

assay. Scientific Reports (6): 1-8.




DOI: https://doi.org/10.26877/jiphp.v1i1.1356

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Jurnal Ilmu Pangan dan Hasil Pertanian

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License
Jurnal Ilmu Pangan dan Hasil Pertanian by Universitas PGRI Semarang is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.