Perubahan Karakteristik Fisik Biji Kopi Yang Ditambahkan Sorbitol Selama Penyangraian

Umar Hafidz Asy'ari Hasbullah, Hikmahyuliani Hikmahyuliani, Zulfah Maharani, Laela Nur Rokhmah

Abstract


Penambahan sorbitol dalam biji kopi akan berdampak terhadap perubahan yang terjadi selama penyangraian. Perubahan yang paling nampak ialah karakteristik fisik biji kopi. Penelutian ini bertujuan untuk mempelajari pengaruh pemberian sorbitol dalam biji kopi terhadap perubahan fisik biji kopi arabika dan robusta selama penyangraian. Penyangraian dilakukan pada tiga tingkat sangrai (light, medium, dan dark). Sorbitol ditambahkan dalam biji sebanyak 10% (b/b). Hasil penelitian menunjukkan bahwa penambahan sorbitol dalam biji kopi arabika dan robusta dapat meningkatkan rendemen, densitas, kadar air, densitas dan kecepatan kenaikan suhu sangrai. Nilai seluruh parameter pada varietas robusta dan arabika setelah ditambahkan sorbitol menjadi setara dibandingkan perlakuan tanpa sorbitol. Peningkatan tingkat sangrai pada biji kopi yang ditambahkan sorbitol cenderung tidak mempengaruhi perubahan nilai rendemen, densitas dan kadar air biji kopi sangrai.

Full Text:

PDF

References


Anese, M., Nicoli, M. C., Verardo, G., Munari, M., Mirolo, G., & Bortolomeazzi, R. (2014). Effect of vacuum roasting on acrylamide formation and reduction in coffee beans. Food Chemistry, 145, 168–172. https://doi.org/10.1016/j.foodchem.2013.08.047

Bagdonaite, K., Derler, K., & Murkovic, M. (2008). Determination of acrylamide during roasting of coffee. J. Agric. Food Chem., 56, 6081–6086. https://doi.org/10.1021/jf073051p

Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R., & Escher, F. (2008a). Coffee roasting and aroma formation: application of different time - temperature conditions. Journal of Agriculture and Food Chemistry, 56, 5836–5846. https://doi.org/10.1021/jf800327j

Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R., & Escher, F. (2008b). Roasting and aroma formation: effect of initial moisture content and steam treatment. J. Agric. Food Chem. 2008, 56, 5847–5851. https://doi.org/10.1021/jf8003288

Bicho, N. C., Leitão, A. E., Ramalho, J. C., & Lidon, F. C. (2012). Use of colour parameters for roasted coffee assessment. Ciência e Tecnologia de Alimentos, 32(3), 436–442. https://doi.org/http://dx.doi.org/10.1590/S0101-20612012005000068

Bottazzi, D., Farina, S., Milani, M., & Montorsi, L. (2012). A numerical approach for the analysis of the coffee roasting process. Journal of Food Engineering, 112, 243–252. https://doi.org/10.1016/j.jfoodeng.2012.04.009

Bustos-vanegas, J. D., Corrêa, P. C., Martins, M. A., Baptestini, F. M., Campos, R. C., de Oliveira, G. H. H., & Nunes, E. H. M. (2017). Developing predictive models for determining physical properties of co ff ee beans during the roasting process. Industrial Crops & Products. https://doi.org/10.1016/j.indcrop.2017.12.015

Caporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean coffee volatile compounds of arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108(March), 628–640. https://doi.org/10.1016/j.foodres.2018.03.077

Fabbri, A., Cevoli, C., Alessandrini, L., & Romani, S. (2011). Numerical modeling of heat and mass transfer during coffee roasting process. Journal of Food Engineering, 105, 264–269. https://doi.org/10.1016/j.jfoodeng.2011.02.030

Fadai, N. T., Melrose, J., Please, C. P., Schulman, A., & Gorder, R. A. Van. (2017). A heat and mass transfer study of coffee bean roasting. International Journal of Heat and Mass Transfer, 104, 787–799. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.083

Gabriel-guzmán, M., Rivera, V. M., Cocotle-ronzón, Y., García-díaz, S., & Hernandez-martinez, E. (2017). Fractality in coffee bean surface for roasting process. Chaos, Solitons and Fractals, 99, 79–84. https://doi.org/10.1016/j.chaos.2017.03.056

Giacalone, D., Kreuzfeldt, T., Yang, N., Liu, C., Fisk, I., & Münchow, M. (2019). Common roasting defects in coffee: Aroma composition, sensory characterization and consumer perception. Food Quality and Preference, 71(March 2018), 463–474. https://doi.org/10.1016/j.foodqual.2018.03.009

Gloess, A. N., Vietri, A., Wieland, F., Smrke, S., Schönbächler, B., Sánchez, J. A., … Yeretzian, C. (2014). Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS. International Journal of Mass Spectrometry, 365–366, 324–337. https://doi.org/10.1016/j.ijms.2014.02.010

Hernández, J. A., Heyd, B., & Trystram, G. (2008). Prediction of brightness and surface area kinetics during coffee roasting. Journal of Food Engineering, 89, 156–163. https://doi.org/10.1016/j.jfoodeng.2008.04.026

Hikmahyuliani. (2018). Pengaruh Penambahan Sorbitol Dan Tingkat Penyangraian Kopi Robusta Terhadap Karakteristik Dan Kemampuan Scavenging Radikal DPPH. Universitas PGRI Semarang.

Jokanović, M. R., Džinić, N. R., Cvetković, B. R., Grujić, S., & Odžaković, B. (2012). Changes of physical properties of coffee beans during roasting. APTEFF, 43, 21–31. https://doi.org/10.2298/APT1243021J

Lee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2016). Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus : II . Effects of different roast levels. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.05.073

Liu, C., Yang, Q., Linforth, R., Fisk, I. D., & Yang, N. (2019). Modifying robusta coffee aroma by green bean chemical pre-treatment. Food Chemistry, 272(July 2018), 251–257. https://doi.org/10.1016/j.foodchem.2018.07.226

Madihah, K. Y. K., Zaibunnisa, A. H., Norashikin, S., Rozita, O., & Misnawi, J. (2012). Optimization of roasting conditions for high-quality robusta coffee. In APCBEE Procedia (Vol. 4, pp. 209–214). Singapore. https://doi.org/10.1016/j.apcbee.2012.11.035

Montavon, P., Mauron, A.-F., & Duruz, E. (2003). Changes in green coffee protein profiles during roasting. J. Agric. Food Chem., 51, 2335–2343. https://doi.org/10.1021/jf020832b

Nunes, F. M., Cruz, A. C. S., & Coimbra, M. A. (2012). Insight into the mechanism of coffee melanoidin formation using modified “in bean” models. Journal of Agricultural and Food Chemistry, 60, 8710–8719. https://doi.org/dx.doi.org/10.1021/jf301527e

Oliveros, N. O., Hernández, J. A., Sierra-Espinosa, F. Z., Guardián-Tapia, R., & Pliego-Solórzano, R. (2017). Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. Journal of Food Engineering, 199, 100–112. https://doi.org/10.1016/j.jfoodeng.2016.12.012

Perrone, D., Donangelo, R., Donangelo, C. M., & Farah, A. (2010). Modeling weight loss and chlorogenic acids content in coffee during roasting. J. Agric. Food Chem., 58, 12238–12243. https://doi.org/10.1021/jf102110u

Uman, E., Colonna-dashwood, M., Colonna-dashwood, L., Perger, M., Klatt, C., Leighton, S., … Hendon, C. H. (2016). The effect of bean origin and temperature on grinding roasted coffee. Scientific Reports, 6(24483), 1–8. https://doi.org/10.1038/srep24483

Wang, N., & Lim, L. (2012). Fourier transform infrared and physicochemical analyses of roasted Coffee. J. Agric. Food Chem., 60, 5446–5453. https://doi.org/dx.doi.org/10.1021/jf300348e

Wang, X., & Lim, L. (2016). Investigation of CO2 precursors in roasted coffee. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.09.095

Wei, F., Furihata, K., Koda, M., Hu, F., Miyakawa, T., & Tanokura, M. (2012). Roasting process of coffee beans as studied by Nuclear Magnetic Resonance: time course of changes in composition. J. Agric. Food Chem., 60, 1005–1012. https://doi.org/dx.doi.org/10.1021/jf205315r

Yang, N., Liu, C., Liu, X., Kreuzfeldt, T., Munchow, M., & Fisk, I. (2016). Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214. https://doi.org/10.1016/j.foodchem.2016.04.124




DOI: https://doi.org/10.26877/jiphp.v2i2.3218

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Ilmu Pangan dan Hasil Pertanian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
Jurnal Ilmu Pangan dan Hasil Pertanian by Universitas PGRI Semarang is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.