Studi Q-EEG: Analisis Konektivitas Fungsional Otak Pada Anak Autism Spectrum Disorder (ASD)

Nita Handayani, M Pangestu

Abstract


Autism Spectrum Disorder (ASD) mengacu pada gangguan perkembangan syaraf yang ditandai dengan adanya kesulitan komunikasi sosial dan perilaku yang berulang. Kondisi pada penderita ASD ini berkaitan dengan gangguan konektivitas fungsional dan struktural otak. Tujuan penelitian ini adalah menganalisis perubahan konektivitas fungsional otak dengan menggunakan metode quantitative electroencephalography (Q-EEG). Parameter fisis yang dikaji berupa fase sinkronisasi sinyal (phase sycronization) yang terdiri dari besaran Phase-Lag Index (PLI) dan weighted Phase-Lag Index (wPLI). Perekaman sinyal otak menggunakan Emotiv Epoc 14-elektroda (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T7, FC6, F4, F8, AF4) dan 2-elektroda referensi (CMS dan DRL). Subjek uji terdiri dari anak penderita ASD dan anak normal masing-masing sebanyak lima anak dengan rentang usia 10-15 tahun. Tahapan penelitian meliputi perekaman sinyal EEG, pre-processing data, dan pengolahan data. Analisis nilai PLI dan wPLI dilakukan pada lima rentang frekuensi gelombang otak (delta, theta, alpha, beta dan gamma). Berdasarkan hasil analisis perhitungan nilai PLI dan wPLI menunjukkan adanya penurunan konektivitas fungsional otak pada anak ASD di semua pita frekuensi. Penurunan konektivitas fungsional pada anak ASD yang signifikan berdasarkan hasil uji statistik, terjadi pada area otak intra-hemisphere kanan untuk frekuensi alpha.

 

Kata kunci: Autism Spectrum Disorder, EEG, konektivitas fungsional otak, PLI, wPLI


Full Text:

PDF

References


American Psychiatric Association 2013 Diagnostic and Statistical Manual of Mental Disorders, 5th Edn. (Washington, DC American Psychiatric Association)

Christensen D and Zubler J 2020 CE: From the CDC: Understanding Autism Spectrum Disorder The American journal of nursing 120(10) p 30–37

Babaeeghazvini P, Rueda-Delgado L M, Gooijers J, Swinnen S P and Daffertshofer A 2021 Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography Front. Hum. Neurosci 15 Article 721206

Fingelkurts A A, Fingelkurts A A and Kähkönen S 2005 Functional connectivity in the brain-is it an elusive concept? Neuroscience and biobehavioral reviews 28(8) p 827–836

Sakkalis V 2011 Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG Computers in biology and medicine 41(12) p 1110–1117

Engel A K, Fries P and Singer W 2001 Dynamic predictions: oscillations and synchrony in topdown processing Nature Reviews Neuroscience 2(10) p 704-716

Rippon G, Brock J, Brown C and Boucher J 2007 Disordered connectivity in the autistic brain: challenges for the ‘new psychophysiology International Journal of Psychophysiology 63(2) p 164-172

Just M A, Cherkassky V L, Keller T A and Minshew N J 2004 Cortical activation and synchronization during sentence comprehension in high functioning autism: evidence of underconnectivity Brain 127(8) p 1811-1821

Just M A, Cherkassky V L, Keller T A, Kana R K and Minshew N J 2007 Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry Cerebral Cortex 17(4) p 951-961

Tommerdahl M, Tannan V, Holden J K and Baranek G T 2008 Absence of stimulus-driven synchronization effects on sensory perception in autism: evidence for local underconnectivity Behavioral and Brain Functions 4(19) p 1-9

Hardmeier M, Hatz F, Bousleiman H, Schindler C and Stam C J 2014 Reproducibility of Functional Connectivity and Graph Measures Based on the Phase Lag Index (PLI) and Weighted Phase Lag Index (wPLI) Derived from High Resolution EEG PLoS ONE 9(10): e108648

Stam C J, Nolte G, Daffertshofer A 2007 Phase lag index: assessment of functional connectivity from multi channel eeg and meg with diminished bias from common sources Hum. Brain Mapp. 28 p 1178–1193

Vinck M, Oostenveld R, Van Wingerden M, Battaglia F and Pennartz C 2011 An improved index of phase-synchronization for electrophysiological data in the presence of volumeconduction, noise and sample-size bias NeuroImage 55(4) p 1548–65

Pop-Jordanova N, Zorcec T, Demerdzieva A, and Gucev Z 2010 QEEG Characteristics and Spectrum Weighted Frequency for Children Diagnosed as Autistic Spectrum Disorder NonlinearBiomed.Phys. 4(4)

Coben R, Clarke A R, Hudspeth W and Barry R J 2008 EEG power and coherence in autistic spectrum disorder Clinical neurophysiology 119(5) 1002–1009

Handayani N, Pratama S H, Khotimah S N, Arif I, Haryanto F 2017 Analisis Spektral Daya dan Koherensi EEG Pada Anak Penderita Autism Spectrum Disorder Wahana Fisika 2(2) p 42–53

Zhou T, Kang J, Cong F, Li X 2020 Early Childhood Develipmental Functional Connectivity Of Autisyic Brains With Non-Negative Matrix Factorization NeuroImage: Clinical 26 p 102251

Khan S, Gramfort A, Shetty N R, Kitzbichler M G, Ganesan S, Moran J M, Lee S M, Gabrieli J D, Tager-Flusberg H B, Joseph R M, Herbert M R, Hämäläinen M S, Kenet T 2013 Local And Long-Range Functional Connectivity Is Reduced In Concert In Autism Spectrum Disorders Proceedings of the National Academy of Sciences of the United States of America 110(8)




DOI: https://doi.org/10.26877/lpt.v2i1.14784

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Lontar Physics Today

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Copyright of Lontar Physics Today ISSN 2828-0970 (online)


Gedung Utama GU.2.01 FPMIPATI, Universitas PGRI Semarang
Jl. Lontar No. 1-Dr. Cipto, Kampus 1 UPGRIS, Semarang
Email: [email protected]

View My Stats