Rekonstruksi integrasi numerik metode PIAS segitiga

Vincent Limanto, Yudhi Yudhi, Bayu Prihandono

Abstract


The solution to numerical integration problems generally can be achieved using mesh methods. However, mesh methods, commonly known as trapezoidal, rectangular, and midpoint, only apply to Cartesian coordinates. Therefore, this research develops a mesh method that can be used for numerical integration in polar coordinates, specifically using Triangle shapes. This study also analyzes the errors from the results of the Triangle mesh method and provides examples and visualizations of applying the Triangle mesh method to solve numerical integration problems. The steps of this research are as follows: first, determining the form of the integral in the problem of numerical integration in polar coordinates. Then, the area bounded by the curve is divided into several parts, each approximated by a triangle. Next, a numerical integration formula of the triangle mesh method is created by summing the areas of each triangle. After that, the resulting error of the triangle mesh method is analyzed using the Taylor series. Finally, proving that the results of the triangle mesh method approximate the area bounded by the curve in polar coordinates. From this research, the numerical integration formula for the Triangle mesh method is obtained, the error formula with a second-order approximation degree, and based on the proof of the numerical integration formula for the Triangle mesh method, it is concluded that as the number of triangles approaches infinity, the results of the Triangle mesh method will converge to the exact area bounded by the curve.


Full Text:

PDF

References


Ansar, A., Nopriani, N., & Ekawati, D. (2021). Pengintegralan numerik untuk interval titik yang tidak sama menggunakan aturan Boole. Journal of Mathematics: Theory and Applications, 8-13.

Apushkinskiy, E. G., Kozhevnikov, V. A., & Biryukov, A. V. (2023). Comparison of approximate and numerical methods for solving the homogeneous dirichlet problem for the helmholtz operator in a two-dimensional domain. Lobachevskii Journal of Mathematics, 44, 3989-3997.

Biswas, S., Moi, S., & Sarkar, S. P. (2022). Numerical integration of neutrosophic valued function by Gaussian quadrature methods. Arabian Journal of Mathematics, 11, 189-211.

Bradie, B. (2016). Yet more ways to skin a definite integral. The College Mathematics Journal, 47(1), 11-18.

Darmawan, R. N. (2016). Perbandingan metode Gauss-Legendre, Gauss-Lobatto, dan Gauss-Kronrod pada integrasi numerik fungsi eksponensial. JMPM: Jurnal Matematika dan Pendidikan Matematika, 1(2), 99-108.

Diethelm, K. (2014). Error bounds for the numerical integration of functions with limited smoothness. SIAM Journal on Numerical Analysis, 52(2), 877-879.

Erma, E., & Alwi, W. (2017). Solusi integrasi numerik dengan metode Simpson (Simpson’S Rule) pada transformasi Hankel. Jurnal MSA, 5(1), 81-91.

Ermawati, Rahayu, P., & Zuiharoh, F. (2017). Perbandingan solusi numerik integral lipat dua pada fungsi aljabar dengan metode Romberg dan simulasi Monte Carlo. Jurnal MSA, 5(2), 14.

Javed, M., & Trefethen, L. N. (2014). A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric convergence for periodic functions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2161), 1-9.

Jayan, S., & Kallur, N. (2015). Numerical integration over irregular domains using generalized Gaussian quadrature. Proceedings of the Jangjeon Mathematical Society, 18(1), 21-30.

Jones, L. K. (2017). An elementary derivation of the numerical integration bounds in beginning calculus. The American Mathematical Monthly, 124(6), 558-561.

Maure, O. P., & Mungkasi, S. (2021). Verifikasi tingkat keakuratan beberapa metode integrasi numerik fungsi atas satu peubah bebas. JURNAL SILOGISME: Kajian Ilmu Matematika dan Pembelajarannya, 6(1), 58-64.

Meiliana, Prihandono, B., & Yudhi. (2024). Penyelesaian integral tak wajar secara numerik menggunakan metode trapesium. Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), 13(1), 81-88.

Mulyono, Suryana, M. E., Siswoyo, C. T., & Rahmanto, A. (2022). Evaluasi dari metode: trapesium, simpson 1/3, simpson 3/8 dan newton cotes orde 4-10 untuk menghitung integral tertentu secara numerik. AKSIOMA: Jurnal Matematika dan Pendidikan Matematika, 13(3), 466-479.

Munir, R. (2015). Metode Numerik (Keempat ed.). Bandung: Informatika Bandung.

Nurhaliza, N., & Zulfah, Z. (2021). Analisis galat metode Euler pada persamaan diferensial biasa. Jurnal Pendidikan Tambusai, 5(3), 114566-114569.

Pandu, Y. K. (2019). Penerapan integral numerik dalam menghitung luas daerah tidak beraturan. Asimtot: Jurnal Kependidikan Matematika, 1(2), 127-132.

Purcell, E. J., & Varberg, D. (1998). Kalkulus dan Geometri Analitis Jilid 1 (Kelima ed.). Jakarta: Erlangga.

Putri, R. Y., & Wartono. (2020). Modifikasi metode Schroder tanpa turunan kedua dengan orde konvergensi empat. AKSIOMA: Jurnal Matematika dan Pendidikan Matematika, 11(2), 240-251.

Silpia, I., Syamsudhuha, & M, M. (2014). Integrasi numerik tanpa error untuk fungsi-fungsi tertentu. JOM FMIPA, 1(2), 484-491.

Stewart, J. (2003). Kalkulus Jilid 2 (Keempat ed.). Jakarta: Erlangga.

Suciaty, F., Ifriyanto, M. H., & Usemahu, S. R. (2023). Estimasi volume pengerukan pelabuhan Tanjung Laut dengan metode integrasi numerik. RekaRacana: Jurnal Teknik Sipil, 9(2), 136.

Trefethen, L. N., & Weideman, J. C. (2014). The exponentially convergent trapezoidal rule. SIAM Review, 56(3), 385-458.

Triatmodjo, B. (2002). Metode Numerik (Revisi ed.). Yogyakarta: Beta Offset.

Utari, R. S., Septy, L., & Hutauruk, L. (2021). Kesalahan pemahaman konsep peserta didik dalam menyelesaikan soal-soal integral lipat dua pada koordinat polar. Inomatika, 3(1), 51-61.

Utomo, B. (2021). Luas daerah dengan pendekatan titik berbantu python. Prosiding sendika, 7(2), 514-519.

Villarino, M. B. (2020). Gauss on Gaussian quadrature. The American Mathematical Monthly, 127(2), 125-138.

Wu, B., & Martinsson, P. G. (2021). Zeta correction: a new approach to constructing corrected trapezoidal quadrature rules for singular integral operators. Advances in Computational Mathematics, 47, 45.

Zein, E. D., Rasimeng, S., & Dani, I. (2022). Validasi pengaruh jumlah partisi dalam perhitungan metode integrasi numerik terhadap tingkat akurasi dan galat menggunakan Matlab (Studi kasus: Riemann kiri dan aturan trapesium). Asimtot : Jurnal Kependidikan Matematika, 4(1), 51-61.




DOI: https://doi.org/10.26877/aks.v16i1.19970

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

AKSIOMA : Jurnal  Matematika dan Pendidikan Matematika  is licensed under a    Creative Commons Attribution-ShareAlike 4.0 International License.


AKSIOMA : Jurnal  Matematika dan Pendidikan Matematika Indexed by:

       

 

                           

 

Copyright of  AKSIOMA : Jurnal Matematika dan Pendidikan Matematika

 

 

View Aksioma Stats