STUDENT GRADUATION PREDICTION USING ALGORITMA K-MEANS WITH FITUR SELECTION CHI SQUARE

Mochamad Fadjar Darmaputra, Nugroho Dwi Saputro

Abstract


Prediksi masa studi sangatlah dibutuhkan oleh manajemen perguruan tinggi dalam menentukan kebijakan preventif terkait dengan pencegahan sejak awal kasus DO (drop Out) Penelitian ini bertujuan untuk menentukan factor akademis yang berpengaruh terhadap mahasiswa tersebut dapat lulus tepat waktu atau tidak  dan membangun model prediksi terbaik dengan teknik data mining .Kriteria pemilihan model yang digunakan adalah dengan metode fitur selection chi square. Dengan Algoritma C4.5 dihasilkan bahwa lama studi dipengaruhi oleh Indeks Prestasi per semester ,jumlah mata kuliah mengulang , jumlah mata kuliah yang ditempuh dan jumlah pengambilan mata kuliah tertentu. Oleh sebab itu faktor - faktor tersebut dapat digunakan sebagai bahan evaluasi bagi pihak pengelola perguruan tinggi.

 

Kata Kunci: Chi Square,K-Means, prediksi, mahasiswa, data mining.

 


Full Text:

PDF

References


B & Pal, S Bharadwaj, "Data Mining : A Prediction for Performance Improvement Using Classificaion," International Journal of Computer Science and Information Security, vol. 9, April 2011.

Chandrima & Sarkar, "Correlation Based Feature Selection Using Rank Aggregation for an Improved Prediction of Potentially Preventable Events," 2013

Chen, Su, Lin Tsai, "An Aplication of PSO Algorithm & Decision Tree for Medical Problem," 2n International Conference on Intelligent Computational System (ICS'2012), pp. 124 - 126, October 2012

C. Vercellis, Business Intelligence: Data Mining and Optimization for Decision Making Decision Making. Southern Gate, Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2009.

Han and Kamber, Data Mining Concepts and technique. San Francisco: Diane Cerra, 2006.

Jasmina & Novakovic, "Toward Optimal Feature Selection Using Ranking Method and Classification Algorithm," 2011.

Ke & Wu, "A Probabilistic Approach to Feature Selection for Multi-Class Text Categorization," pp. 1310 - 1317, 2007.

Kovacic, "Early Prediction of Student Success : Mining Students Enrolment Data," Proceedings of Informing Science & IT Education Conference (InSITE), 2010.

Lee Hyeseon, Jun Hyuk-Chi Ju Cho-Yun, "Optimization of Decision Tree for Classification Using a Particle Swarm," vol. 10, pp. 272 - 278, Desember 2011.

M Bramer, Principles of Data Mining. London: Springer-Verlag, 2006.

M.N & Kalyankar, N.V Quadril, "Drop Out Feature of Student Data for Academic Performance Using Decision Tree Technique," Global

Journal of Computer Science and Technology, pp. 1 - 5, April 2010.

Ogunde & D.A, Ajibade A.O, "A Data Mining System for Predicting University Students' Graduation Grades Using ID3 Decision Tree Algorithm," Journal of Computer Science and Information Technology, vol. 2, pp. 21 - 46, March 2014.

Paokanta P, "B- Thalassemia Knowledge Elicitation Using Data Engineering : PCA, Pearson's Chi Square and Machine Learning," International Journal of Computer Theory and Engineering, vol. 2, pp. 702 - 706, October 2012.

Sonal & Khanna Vineet Saxena, "Evaluation of Prediction Models for Tumor Class Detection with Classification Algorithm Employing Chi Square and Information Gain Feature Selection," International Journal of Advanced Reaserch in Computer Science and Software Engineering, vol. 4, pp. 821 - 825, March 2014.

Tahyudin & Imam, "Comparing Classification Algorithm of Data Mining to Predict the Graduation Students on Time," Information System International Conference, December 2013.

Tsai Cheng Fa Jantawan Bangsuk, "The Application of Data Mining to Build Classification Model for Predicying Graduate Employment," International Journal of Computer Science and Information Security, vol. 11, October 2013.

V Sharanthi Vijay, Devi Gayathri M Kumar Varun, "Hepatitis Prediction Model based on Data Mining Algorithm and Optimal Feature Selection to Improve Predictive Accuracy," International Journal of Computer Application , vol. 51, Agust 2012.

V Sundaram T Smitha, "Comparative Study of Data Mining Algorithm for High Dimensional Data Analysis," International Journal of Advance in Engineering & Technology, vol. 4, no. 2, pp. 173 - 178, September 2012.




DOI: http://dx.doi.org/10.26877/ep.v4i2.5035

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 EQUILIBRIA PENDIDIKAN : Jurnal Ilmiah Pendidikan Ekonomi

 

 

INDEXED BY   :

    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.