PENERAPAN ALGORITMA K-MEANS CLUSTERING PADA DATA KELUHAN PELANGGAN PT. PLN PERSERO KOTA PAGAR ALAM

Sasmita Sasmita, Siti Muntari

Abstract


In this modern era, all activities and needs of residents are largely influenced by electricity. Electricity is needed because all household appliances use electric power for company needs or residential needs. To improve the service quality of PT. PLN Persero, Pagar Alam City, in order to reduce the number of customer complaints in Pagar Alam City, a data clustering process is needed which is very important because the increase in data is quite significant. The process of grouping data uses K-Means Clustering because this algorithm is suitable for grouping the data. The results of this study are in the form of designing the application of the K-Means Clustering algorithm to customer complaint data at PT.PLN Persero City of Pagar Alam where the cluster is divided into 3, namely C0 as the highest complaint level, C1 for moderate complaint levels and C2 for low complaint levels. The data import process uses rapidminner. From the pattern obtained in rapidminer which is used on the system with the k-means clustering method, it is obtained that cluster_0 has a high complaint rate with a total of 108, cluster_1 has a moderate complaint rate with a total of 75 and cluster_2 has a low complaint rate with a total 45.


Keywords


PT. PLN, Persero, K-Means, Clustering, Rapid Application Development

Full Text:

PDF

References


Dahlan, A., Prasetyo, M., Erliana, C. I., Rahardja, U., & Karim, A. (2020). Sistem Informasi Pelayanan Dan Keluhan Pelanggan Di PT.PLN. In Sefa Bumi Persada. https://repository.unimal.ac.id/5594/1/BUKU DAHLAN-MUHAJIR.pdf

Kasus, S., Keluhan, D., Pt, P., & Persero, P. L. N. (2022). PENERAPAN ALGORITMA K - MEANS CLUSTERING. 6(2), 327–340. https://doi.org/10.52362/jisamar.v6i2.761

Hartanti, D., Mining, D., K-means, A., & Mining, D. (2015). Model Clustering Menggunakan Algoritma K-Means Pada Data Keluhan Pelanggan Pt . Pln ( Studi Kasus : Pt . Pln ( Persero ) Distribusi Jakarta Dan Tangerang ). Model Clustering Menggunakan Algoritma K-Means Pada Data Keluhan Pelanggan Pt . Pln ( Studi Kasus : Pt . Pln ( Persero ) Distribusi Jakarta Dan, 4, 119.

Rohmatullah, F. M. (2018). Sistem Klasifikasi

Keluhan Pelanggan Pt Pln Semarang Menggunakan Algoritma Naïve Bayes.

Metisen, B. M., & Sari, H. L. (2015). Analisis clustering menggunakan metode K-Means dalam pengelompokkan penjualan produk pada Swalayan Fadhila. Jurnal Media Infotama, 11(2), 110–118.

Suntoro, J. (2019). Data Mining Algoritma Dan Implementasi Dengan Pemrograman Php. Pt. Elex Media Komputindo.




DOI: https://doi.org/10.26877/jitek.v9i1/Mei.15366

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats

Barcode ISSN Jurnal JITEK:

p-ISSN                               e-ISSN

         

JITEK telah terindeks pada: 

        


Creative Commons License

JITek: Jurnal Ilmiah Teknosains is licensed under a Creative Commons Attribution 4.0 International Licensep-ISSN (Print) 2460-9986 | e-ISSN (Online) 2476-9436.

Based on a work at http://journal.upgris.ac.id/index.php/jitek.

Situs Togel