Mangrove Tree Species Classification Based on Leaf, Stem, and Seed Characteristics Using Convolutional Neural Networks with K-Folds Cross Validation Optimalization

Fadillah Farhan, Christy Atika Sari, Eko Hari Rachmawanto, Nur Ryan Dwi Cahyo

Abstract


Mangrove classification plays a pivotal role in environmental monitoring and conservation efforts. In this study, our meticulously curated dataset comprised diverse mangrove tree images standardized to 250 x 250 pixels, capturing the nuances of various species. Employing advanced deep learning techniques, our models demonstrated exceptional accuracy, reaching 99.23% without K-Folds and a slightly enhanced 99.78% with K-Folds. These models exhibited outstanding consistency, showcasing recall, precision, and F1-Score metrics all surpassing 99%. Through rigorous testing in 10 experiments, both K-Folds and non-K-Folds methods consistently achieved 100% accuracy, evidenced by the presence of True Positives in every classification scenario. This remarkable performance underscores the robustness of our algorithms in precisely classifying mangrove species, offering a valuable tool for ecological research and conservation initiatives.

Keywords


Mangrove; Image Classification; CNN; K-Folds;

Full Text:

PDF

References


N. D. R. Lopes, T. Li, P. Zhang, N. Matomela, H. O. Ikhumhen, and R. M. Sá, “Predicting future coastal land use/cover change and associated sea-level impact on habitat quality in the Northwestern Coastline of Guinea-Bissau,” J Environ Manage, vol. 327, Feb. 2023, doi: 10.1016/j.jenvman.2022.116804.

S. A. Vasilescu et al., “A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-87046-9.

K. Kuru, S. Clough, D. Ansell, J. McCarthy, and S. McGovern, “WILDetect: An intelligent platform to perform airborne wildlife census automatically in the marine ecosystem using an ensemble of learning techniques and computer vision,” Expert Syst Appl, vol. 231, Nov. 2023, doi: 10.1016/j.eswa.2023.120574.

A. S. Paymode and V. B. Malode, “Transfer Learning for Multi-Crop Leaf Disease Image Classification using Convolutional Neural Network VGG,” Artificial Intelligence in Agriculture, vol. 6, pp. 23–33, Jan. 2022, doi: 10.1016/j.aiia.2021.12.002.

N. Papandrianos, E. Papageorgiou, A. Anagnostis, and K. Papageorgiou, “Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application,” PLoS One, vol. 15, no. 8, Aug. 2020, doi: 10.1371/journal.pone.0237213.

M. Guo, Z. Yu, Y. Xu, Y. Huang, and C. Li, “Me-net: A deep convolutional neural network for extracting mangrove using sentinel-2A data,” Remote Sens (Basel), vol. 13, no. 7, Apr. 2021, doi: 10.3390/rs13071292.

Z. Ahmad, S. Rahim, M. Zubair, and J. Abdul-Ghafar, “Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review,” Diagnostic Pathology, vol. 16, no. 1. BioMed Central Ltd, Dec. 01, 2021. doi: 10.1186/s13000-021-01085-4.

G. Lassalle, M. P. Ferreira, L. E. C. La Rosa, and C. R. de Souza Filho, “Deep learning-based individual tree crown delineation in mangrove forests using very-high-resolution satellite imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 189, pp. 220–235, Jul. 2022, doi: 10.1016/j.isprsjprs.2022.05.002.

J. Ou et al., “Coupling UAV Hyperspectral and LiDAR Data for Mangrove Classification Using XGBoost in China’s Pinglu Canal Estuary,” Forests, vol. 14, no. 9, p. 1838, Sep. 2023, doi: 10.3390/f14091838.

N. U. Din, L. Zhang, and Y. Yang, “Automated Battery Making Fault Classification Using Over-Sampled Image Data CNN Features,” Sensors, vol. 23, no. 4, Feb. 2023, doi: 10.3390/s23041927.

S. Xu et al., “Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV,” Remote Sens (Basel), vol. 15, no. 3, Feb. 2023, doi: 10.3390/rs15030854.

A. Farzipour, R. Elmi, and H. Nasiri, “Detection of Monkeypox Cases Based on Symptoms Using XGBoost and Shapley Additive Explanations Methods,” Diagnostics, vol. 13, no. 14, p. 2391, Jul. 2023, doi: 10.3390/diagnostics13142391.

C. Du, W. Fan, Y. Ma, H. Il Jin, and Z. Zhen, “The effect of synergistic approaches of features and ensemble learning algorith on aboveground biomass estimation of natural secondary forests based on als and landsat 8,” Sensors, vol. 21, no. 17, Sep. 2021, doi: 10.3390/s21175974.




DOI: https://doi.org/10.26877/asset.v5i3.17188

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR
https://kampus.lol/halowir/
https://vokasi.unpad.ac.id/gacor/?ABKISGOD=INFINI88 https://vokasi.unpad.ac.id/gacor/?ABKISGOD=FREECHIPS https://vokasi.unpad.ac.id/gacor/?ABKISGOD=DATAHK https://vokasi.unpad.ac.id/gacor/?ABKISGOD=TOTO+4D

https://build.president.ac.id/

https://build.president.ac.id/modules/

https://build.president.ac.id/views/

https://yudisium.ft.unmul.ac.id/pages/

https://yudisium.ft.unmul.ac.id/products/

https://yudisium.ft.unmul.ac.id/data/

https://ssstik.temanku.okukab.go.id/

https://snaptik.temanku.okukab.go.id/

https://jendralamen168.dinsos.banggaikab.go.id/gacor/

https://dinsos.dinsos.banggaikab.go.id/

https://kema.unpad.ac.id/wp-content/bet200/

https://kema.unpad.ac.id/wp-content/spulsa/

https://kema.unpad.ac.id/wp-content/stai/

https://kema.unpad.ac.id/wp-content/stoto/

Advance Sustainable Science, Engineering and Technology (ASSET)

E-ISSN: 2715-4211
Published by Science and Technology Research Centre

Universitas PGRI Semarang, Indonesia

Website: http://journal.upgris.ac.id/index.php/asset/index 
Email: [email protected]