Implementation of the Adaboost Method to Increase the Accuracy of Early Diabetes Predictions to Prevent Death Decision Tree-Based
Abstract
This research discusses the importance of early diabetes prediction and efforts to increase prediction accuracy using a Decision Tree Learning Algorithm and integration of the Adaboost Method. This study uses a data set from Kaggle with 520 records, 16 attributes, and one positive or negative diabetes class. The evaluation method used is the Confusion Matrix. The research results showed that the Decision Tree algorithm achieved an accuracy of 94.23%, but after integrating the Adaboost Method, the accuracy increased to 97.31%. The implications of these findings emphasize the importance of predictive approaches in early disease detection and highlight the potential of the Adaboost method in improving the accuracy of diabetes prediction.
Keywords
Full Text:
PDFReferences
Kementerian Kesehatan RI., “Infodatin tetap produktif, cegah, dan atasi Diabetes Melitus 2020,” Pusat Data dan Informasi Kementerian Kesehatan RI. pp. 1–10, 2020.
S. Ucha Putri, E. Irawan, F. Rizky, S. Tunas Bangsa, P. A. -Indonesia Jln Sudirman Blok No, and S. Utara, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,” Januari, vol. 2, no. 1, pp. 39–46, 2021.
M. R. Firmansyah and Y. P. Astuti, “Stroke Classification Comparison with KNN through Standardization and Normalization Techniques,” ASSET, vol. 6, no. 1, pp. 1–8, 2024.
P. Songthung and K. Sripanidkulchai, “Improving type 2 diabetes mellitus risk prediction using classification,” 2016 13th Int. Jt. Conf. Comput. Sci. Softw. Eng. JCSSE 2016, 2016, doi: 10.1109/JCSSE.2016.7748866.
M. Komi and X. Zhang, “Application of Data Mining Methods in Diabetes Prediction Messan,” no. S Ix, pp. 1006–1010, 2017.
R. S. Raj, D. S. Sanjay, M. Kusuma, and S. Sampath, “Comparison of Support Vector Machine and Naïve Bayes Classifiers for Predicting Diabetes,” 1st Int. Conf. Adv. Technol. Intell. Control. Environ. Comput. Commun. Eng. ICATIECE 2019, pp. 41–45, 2019, doi: 10.1109/ICATIECE45860.2019.9063792.
L. Amini et al., “Prediction and control of stroke by data mining,” Int. J. Prev. Med., vol. 4, pp. S245–S249, 2013.
T. Kansadub, S. Thammaboosadee, S. Kiattisin, and C. Jalayondeja, “Stroke risk prediction model based on demographic data,” BMEiCON 2015 - 8th Biomed. Eng. Int. Conf., pp. 3–5, 2016, doi: 10.1109/BMEiCON.2015.7399556.
T. Asra, A. Setiadi, M. Safudin, E. W. Lestari, N. Hardi, and D. P. Alamsyah, “Implementation of AdaBoost Algorithm in Prediction of Chronic Kidney Disease,” 2021 7th Int. Conf. Eng. Appl. Sci. Technol. ICEAST 2021 - Proc., pp. 264–268, 2021, doi: 10.1109/ICEAST52143.2021.9426291.
J. Ha, M. Kambe, and J. Pe, Data Mining: Concepts and Techniques. 2011. doi: 10.1016/C2009-0-61819-5.
A. H. Yunial, “Optimization Analysis of Support Vector Machine Classification Algorithms, Decision Trees, and Neural Networks Using Adaboost and Bagging,” J. Inform. Univ. Pamulang, vol. 5, no. 3, p. 247, 2020.
DOI: https://doi.org/10.26877/asset.v6i2.18342
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Advance Sustainable Science, Engineering and Technology (ASSET)
E-ISSN: 2715-4211
Published by Science and Technology Research Centre
Universitas PGRI Semarang, Indonesia
Website: http://journal.upgris.ac.id/index.php/asset/index
Email: [email protected]