Diagnosa Penyakit BrownSpot dan LeafBlast Pada Tanaman Padi dengan MobileNetV2 dan TensorFlow-Lite
Abstract
Keywords
Full Text:
PDFReferences
M. I. Mahdi, “Krisis Petani Muda di Negara Agraris,” DataIndonesia.id, 2022.
M. B. Yunindanova, “MEMPERSIAPKAN TRANSFORMASI PERTANIAN INDONESIA DI ERA SOCIETY 5.0,” Agrosains J. Penelit. Agron., vol. 24, no. 1, 2022, doi: 10.20961/agsjpa.v24i1.59741.
F. Farhan and R. Susanti, “Petani Karawang Meradang, 50 hektar sawah gagal panen akibat sundep,” Kompas.com. [Online]. Available: https://bandung.kompas.com/read/2023/03/13/181325078/petani-karawang-meradang-50-hektar-sawah-gagal-panen-akibat-sundep#:~:text=Editor&text=KARAWANG%2C KOMPAS.com - Petani,sundep atau hama penggerek batang.
B. P. Statistik, “Luas Panen dan Produksi Padi di Indonesia 2023 (Angka Sementara),” BPS. [Online]. Available: https://www.bps.go.id/id/pressrelease/2023/10/16/2037/luas-panen-dan-produksi-padi-di-indonesia-2023--angka-sementara-.html
S. Yanti, Marlina, and Fikrinda, “Pengendalian Penyakit Hawar Daun Bakteri pada Padi Sawah Menggunakan Fungi Mikoriza,” Agroecotania, vol. 1, no. 2, 2018.
M. Cakmak and M. E. Tenekeci, “Melanoma detection from dermoscopy images using Nasnet Mobile with transfer learning,” in SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings, 2021. doi: 10.1109/SIU53274.2021.9477985.
A. O. Adedoja, P. A. Owolawi, T. Mapayi, and C. Tu, “Intelligent Mobile Plant Disease Diagnostic System Using NASNet-Mobile Deep Learning,” IAENG Int. J. Comput. Sci., vol. 49, no. 1, 2022.
C. E. Sukmawati, A. R. Pratama, and ..., “Prediksi Penyakit Blas Pada Tanaman Padi dengan Model Spatial Multi-Criteria Evaluation (SMCE) Berbasis Mobile,” Syntax J. …, vol. 12, no. 02, pp. 27–42, 2023, [Online]. Available: https://journal.unsika.ac.id/index.php/syntax/article/view/9945%0Ahttps://journal.unsika.ac.id/index.php/syntax/article/download/9945/4186
Herwina, Darmatasia, A. K. A. Shiddiq, and T. D. Syahputra, “Deteksi Penyakit pada Tanaman Padi Menggunakan MobileNet Transfer Learning Berbasis Android,” Agents J. Artif. Intell. Data Sci., vol. 2, no. 2, 2022.
S. Sheila, I. Permata Sari, A. Bagas Saputra, M. Kharil Anwar, and F. Restu Pujianto, “Deteksi Penyakit Pada Daun Padi Berbasis Pengolahan Citra Menggunakan Metode Convolutional Neural Network (CNN),” MULTINETICS, vol. 9, no. 1, 2023, doi: 10.32722/multinetics.v9i1.5255.
A. Fuadi and A. Suharso, “PERBANDINGAN ARSITEKTUR MOBILENET DAN NASNETMOBILE UNTUK KLASIFIKASI PENYAKIT PADA CITRA DAUN KENTANG,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 3, 2022, doi: 10.29100/jipi.v7i3.3026.
A. A. Bracino, D. G. D. Evangelista, R. S. Concepcion, E. P. Dadios, and R. R. P. Vicerra, “Non-Destructive Classification of Paddy Rice Leaf Disease Infected by Bacterial and Fungal Species Using Vision-Based Deep Learning,” J. Adv. Comput. Intell. Intell. Informatics, vol. 27, no. 3, 2023, doi: 10.20965/jaciii.2023.p0333.
M. L. Sylvia and S. Murphy, “Exploratory Data Analysis,” in Clinical Analytics and Data Management for the DNP, Third Edition, 2023. doi: 10.1891/9780826163240.0014.
S. Li, “TensorFlow Lite: On-Device Machine Learning Framework,” Jisuanji Yanjiu yu Fazhan/Computer Res. Dev., vol. 57, no. 9, 2020, doi: 10.7544/issn1000-1239.2020.20200291.
Tensorflow, “Tensorflow Lite Guide,” https://www.tensorflow.org/lite/guide.
D. Iswantoro and D. Handayani UN, “Klasifikasi Penyakit Tanaman Jagung Menggunakan Metode Convolutional Neural Network (CNN),” J. Ilm. Univ. Batanghari Jambi, vol. 22, no. 2, 2022, doi: 10.33087/jiubj.v22i2.2065.
T. Handhayani and J. Hendryli, “Leboh: An Android Mobile Application for Waste Classification Using TensorFlow Lite,” in Lecture Notes in Networks and Systems, 2023. doi: 10.1007/978-3-031-16075-2_4.
DOI: https://doi.org/10.26877/jiu.v10i1.19133
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Rahmat Gunawan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Informatika Upgris by Program Studi Informatika UPGRIS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.