Kajian Pustaka: Potensi Kandungan Polifenol pada Sargassum sp. sebagai Alternatif Penanganan Diabetes Mellitus Tipe 2
Abstract
Diabetes mellitus is a degenerative disease that threat the health of world population. Generally, the treatment of this disease is using synthetic drugs which have many side effects. Polyphenols are active compounds that capable of treating degenerative diseases such as hyperglycemia and hyperlipidemia. Polyphenols are phenolic compounds (aromatic rings with hydroxyl) of the L-phenylalanine group. Several examples of polyphenol compounds are tannins, fluorotanin, flavonoids. Polyphenol compounds have the ability as antioxidants, thus widely used to improve the condition of iabetes mellitus patients. Polyphenols have the ability to supress postprandial hyperglycemia by inhibiting the activity of carbohydrate hydrolyzing enzymes, inhibiting glucose transport in the blood, affecting the function of pancreatic β cells, and glucose uptake tissue. Polyphenols can be found in various types of seaweed. Sargassum is one of the seaweeds with high potential to produce polyphenol compounds. The in vitro and in vivo studies of Sargassum extract have been proven to to lower the risk of diabetes. In vitro testing showed the ability of Sargassum extract to inhibit α-amylase and α-glucosidase. Sargassum extract showed the ability to lower hyperglycemia of diabetes-induced rats with streptozotocin. In addition, Sargassum extract also has the potential to be used as an adjuvant in the treatment of diabetes mellitus with acarbose, thereby increasing the effectiveness of the treatment efficiency.
Diabetes melitus merupakan salah satu penyakit degeneratif yang mengancam kesehatan masyarakat dunia. Pengobatan penyakit ini umumnya menggunakan obat-obat sintetik yang memiliki efek samping. Polifenol merupakan salah satu senyawa aktif yang dapat menjadi solusi alternatif untuk menangani penyakit degeneratif seperti hiperglikemia dan hiperlipidemia. Polifenol merupakan senyawa fenolik (cincin aromatik dengan hidroksil) golongan L-fenilalanin. Beberapa contoh senyawa polifenol antara lain tannin, florotanin, flavonoid. Senyawa polifenol memiliki kemampuan sebagai antioksidan sehingga banyak dimanfaatkan untuk meningkatkan kondisi pengidap diabetes melitus. Polifenol memiliki kemampuan menekan hiperglikemia postprandial dengan cara menghambat aktivitas enzim penghidrolisis karbohidrat, menghambat transport glukosa dalam darah, mempengaruhi fungsi sel β pankreas, dan mempengaruhi jaringan uptake glukosa. Kandungan senyawa polifenol banyak ditemukan pada berbagai jenis rumput laut. Sargassum merupakan salah satu rumput laut yang memiliki potensi sebagai penghasil senyawa polifenol. Pengujian ekstrak Sargassum secara in vitro maupun in vivo terbukti memiliki kemampuan untuk memperkecil risiko diabetes. Pengujian secara in vitro menunjukkan kemampuan esktrak sargassum dalam menghambat α-amilase dan α-glukosidase. Ekstrak Sargassum memiliki kemampuan menurunkan kadar hiperglikemia pada tikus diabetes yang diinduksi diabetes dengan streptozotocin. Lebih jauh, ekstrak Sargassum juga memiliki potensi digunakan sebagai adjuvan dalam penanganan diabetes melitus dengan akarbose sehingga meningkatkan efektifitas efisiensi pengobatan.
Keywords
Full Text:
PDFReferences
Adefegha SA, dan Oboh G. 2012. In vitro inhibition activity of polyphenol-rich extract from Syzygium aromaticum (L.) Merr. & Perry (clove) buds against carbohydrate hydrolyzing enzymes linked to type diabetes and Fe2+-induced lipid peroxidation in rat pancreas. Asian Pacific Journal of Tropical Biomedicine. 2 (10):774-781. DOI:10.1016/S2221-1691(12)60228-7.
Ademiluyi AO, Oboh G. 2012. Phenolic-rich extract from selected tropical underutilized legumes inhibit α-amilase, α-glucosidase, and angiotensin I converting enzyme in vitro. Journal of Basic & Clinic Physiology & Pharmacology. 23 (1):17-25. DOI : 10.15151/jbcpp-2011-0005.
Akbarzadeh S, Gholampour H, Farzadinia P, Daneshi A, Ramavandi B, Moazzeni A, Keshavarz M, Bargahi A. 2020. Anti-diabetic effects of Sargassum oligocystum on Streptozotocininduced diabetic rat. Iranian Journal of Basic Medical Sciences, 21 (3) Mar 2018.
Ali H, Houghton PJ, Soumyanath A. 2006. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes with particular reference to Phyllanthus amarus. Journal of Ethnopharmacol. 107: 449-455.
American Diet Association (ADA). 2012. Diagnosis and classification of diabetes mellitus. Diabetes Care 35 (1): 64-71.
Apostolidis E, Karayannakidis PD, Kwon YI, Lee CM, Seeram NP. 2011. Seasonal variation of phenolic antioxidant-mediate α-glucosidase inhibition of Ascophyllum nodosum. Plant Foods and Human Nutritions. 66: 313–319.
Arnold TM, Targett NM. 2000. Evidence for metabolic turnover of polyphenolics in tropical brown algae. Journal of Chemical Ecology. 26 (6):1393-1410.
Atmadja WS, Kadi A, Sulistijo, Rahmat R. 1996. Pengenalan Jenis-Jenis Rumput Laut Indonesia. Puslitbang Oseanologi. Jakarta: LIPI.
Badrinathan S, Suneeva SC, Shiju TM, Kumar CPG, Pragasam V. 2011. Exploration of a novel hydroxyl radical scavenger from Sargassum myriocystum. Journal of Medicinal Plants Research. 5 (10):1997-2005.
Bocanegra A, Bastida S, Benedí J, Ródenas S, Sánchez-Muniz FJ. 2009. Characteristics and nutritional and cardiovascular-health properties of seaweeds. Journal of Medicinal Food. 12:236–258.
Boden G, Laakso M. 2004. Lipids and glucose in type 2 diabetes. Diabetes Care. 27 (9):2253-2259.
Bold HC, Wayne MJ. 1985. Intoduction to the Algae, Structure and Reproduction Second Edition. New Jersey: Prentice Hall.
Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. 2008. Beta-cell failure as a complication of diabetes. Reviews Endocrine & Metabolic Disorder. 9:329–343.
Conejo R, Valverde A, Benito M, Lorenzo M. 2001. Insulin produces myogenesis in C2C12 myoblasts by induction of NF-jB and downregulation of AP-1 activities. Journal of Cellular Physiology. 186:82–94. (Abstr.)
Dorea CMPG, Alvesa MGDCF, Will LSEP, Costa TG, Sabry DA, Rêgo LARDS, Accardo CM, Rocha HAO, Filgueira LGA, Leite EL. 2013. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydrate Polymers. 1 (1):467-75. DOI: 10.1016/j.carbpol.2012.07.075.
Drozdowski LA, Thomson ABR. 2006. Intestinal sugar transport. World Journal of Gastroenterology. 12 (11):1657-1670. ISSN 1007-9327.
García-Casal MN, Ramirez J, Leets I, Pereira AC, Quiroga MF. 2008. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. British Journal of Nutrition. 101 (1):79-85. DOI: 10.1017/S0007114508994757.
Gross GG. 1999. Biosynthesis of hydrolysable tannins : In Comprehensive Natural Products Chemistry, Vol. 3, Pinto BM (ed). Amsterdam: Elsevier.
Hanamura T, Mayama C, Aoki H, Hirayama Y, Shimizu M. 2006. Antihyperglycemic effect of polyphenols from Acerola (Malpighia emarginata DC.) fruit. Bioscience Biotechnology and Biochemistry. 70 (8):1813–1820.
Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. 2010. Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences. 11:1365-1402. DOI:10.3390/ijms11041365.
Heightman TD, Vasella AT. 1999, Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. Angewandte Chemie International Edition. 38:750–770. DOI: 10.1002/(SICI)1521-3773(19990315)38:6<750::AID-ANIE750>3.0.CO;2-6.
Hemalatha S. 2017. Characterization, in silico and in vitro determination of antidiabetic and antiinflammatory potential of ethanolic extract of Sargassum wightii. Asian Journal Pharmacy and Clinical Research. 10 (4):297–301.
Holdt SL, Kraan S. 2011. Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology. 23:543–597. DOI 10.1007/s10811-010-9632-5.
International Diabetes Federation (IDF). 2013. IDF Diabetes Atlas. 6th Edition (online version). . Diakses 4 Februari 2021.
Husni A, Tiara P, Ustadi, Agung GS, Agung EN. 2018. In vitro antidiabetic activity of Sargassum hystrix and Eucheuma denticulatum from Yogyakarta beach of Indonesia. Proceddings of the Pakistan Academy of Sciences : B. Life and Environmental Sciences. 55 (3):1-8.
Hwang PA, Hung YL, Tsai YK, Chien S., Kong ZL. 2015. The brown seaweed Sargassum hemiphyllum exhibits alpha-amylase and alpha-glucosidase inhibitory activity and enhances insulin release in vitro. Cytotechnology. 67 (4):653–660.
Jaiswal N., Srivastava SP, Bhatia V, Mishra A, Sonkar AK, Narender T, Srivastava AK, Tamrakar AK. 2012. Inhibition of alpha-glucosidase by Acacia nilotica prevents hyperglycemia along with improvement of diabetic complications via aldose reductase inhibition. Journal of Diabetes & Metabolism. S6 (004):2-7. DOI: 10.4172/2155-6156.S6-004.
Kandra L, Gyémánt G, Zajácz A, Battab G. 2004. Inhibitory effects of tannin on human salivary alpha-amylase. Biochemical and Biophysical Research Community. 319:1265-1271. (Abstr.)
Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, and Shimizu M. 2000. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. Journal of Agriculture and Food Chemistry. 48:5618–5623.
Koivikko R. 2008. Brown Algal Phlorottanins : Improving and applying chemical methods. Tesis. Turku: University of Turku, Finland.
Krentz AJ, Bailey CJ. 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 65:385–411.
Luo HY, Wang B, Yu CG, Qu YL, Su CL. 2010. Evaluation of antioxidant activities of five selected brown seaweeds from China. Journal of Medicinal Plants Research. 4 (18):2557-2565. DOI: 10.5897/JMPR10.609. ISSN 1996-0875.
Meenakshi S, Gnambigai DM, Tamil-mozhi S, Arumugam M, Balasubrama T. 2009. Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast. Global Journal of Pharmacology. 3 (2):59-62.
Misnadiarly. 2006. Diabetes Mellitus : Gangren, Ulcer, Infeksi. Mengenal Gejala, Menanggulangi, dan Mencegah Komplikasi. Jakarta : Pustaka Populer Obor.
Mohapatra, L., S.K. Bhattamishra, R. Panigrahy, S. Parida, P. Pati. 2016. Antidiabetic Effect of Sargassum wightii and Ulva fasciata in High fat diet and Multi Low Dose Streptozotocin Induced Type 2 Diabetic Mice. UK Journal of Pharmaceutical and Biosciences, Vol. 4(2), 13-23.
Motshakeri M, Ebrahimi M, Goh YM, Matanjun P, Mohamed S. 2013. Sargassum polycystum reduces hyperglycaemia, dyslipidaemia and oxidative stress via increasing insulin sensitivity in a rat model of type 2 diabetes. Journal of the Science of Food and Agriculture. 93 (7):1772–1778.
Nakai M., Kageyama N, Nakahara K, Miki W. 2006. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Marine Biotechnology. 8:409-414. DOI: 10.1007/s10126-005-6168-9.
Park C, Kim M, Lee J, Min B, Bae H, Choe W, Kim S, Ha J. 2007. Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Experimental & Molecular Medicine. 39 (2):222-229.
Petti S, Scully C. 2009. Polyphenols, oral health and disease: A review. Journal of Dentistry. 37:413-423.
Rachmat R. 1999. Potensi Algae Coklat di Indonesia dan Prospek Pemanfaatannya. Pra Kipnus VII Forum Komunikasi I Ikatan Fikologi Indonesia (IFI). Prosiding: 31-35.
Ramchoun M, Harnafi H, Alem C, Büchele B, Simmet T, Rouis M, Atamani F, Amrani S. 2012. Hypolipidemic and antioxidant effect of polyphenol-rich extracts from Moroccan thyme varieties. e-SPEN. 7:e119-e124.
Rastija V, Beslo D, Nikolic S. 2012. Two-dimensional quantitative structure–activity relationship study on polyphenols as inhibitors of a-glucosidase. Medicinal Chemical Research. 21:3984–3993. DOI 10.1007/s00044-011-9938-0.
Renitta, R.E., R. Narayanan, J. Cypriyana PJ., A.V. Samrot. 2020. Antidiabetic potential of methanolic extracts of Sargassum wightii in streptozotocin induced diabetic mice. Biocatalysis and Agricultural Biotechnology, 28: 101763.
Rutter GA. 2001. Nutrient-secretion coupling in the pancreatic islet beta-cell: Recent advances. Molecular Aspects of Medicine. 22:247–284.
Sales PM, Souza PM, Simeoni LA, Magalhães PO, Silveira D. 2012. α-amylase inhibitors: a review of raw material and isolated compounds from plant source. Journal of Pharmacy & Pharmaceutical Science. 15 (1):141 – 183.
Scalbert A, Manach C, Morand C, Remesy C. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition. 45:287-306. DOI: 10.1080/1040869059096.
Schäfer A, Hőgger P. 2007. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol®) effectively inhibits α-glucosidase. Diabetes Research and Clinical Practice. 77:41-46.
Sergent T, Vanderstraeten J, Winand J, Beguin P, Schneider YV. 2012. Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chemistry. 135:68–73.
Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, Levine M. 2002. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose. Journal of Biological Chemistry. 277:15252–15260.
Stumvoll M, Goldstein PA, van Haeften TW 2005. Type 2 Diabetes: principles of pathogenesis and therapy. Lancet. 365: 1333-1346.
Tadera K, Minami Y, Takamatsu K, Matsuoka T. 2006. Inhibition of α-glucosidase and α-amylase by flavonoids. Journal of Nutritional Science and Vitaminology. 52:149-153.
Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H. 2011. Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutrition. 27:287-292. (Abstr.)
Vijayabaskar P, V. Shiyamala V. 2011. Antibacterial activities of brown marine algae (Sargassum wightii and Turbinaria ornata) from the Gulf of Mannar Biosphere Reserve. Advances in Biological Research. 5 (2):99-102. ISSN 1992-0067.
Waspadji S, Sukardji K, Octarina M. 2009. Pedoman Diet Diabetes Melitus. Jakarta: Balai Penerbitan FKUI.
Wilson T, Singh AP, Vorsa N, Goettl CD, Kittleson KM, Roe CM, Kastello GM, Ragsdale FR. 2008. Human glycemic response and phenolic content of unsweetened cranberry juice. Journal of Medicinal Food. 11: 46–54.
World Health Organization (WHO). 2019. Classification of Diabetes Mellitus 2019. . Diakses 6 Februari 2021.
You Q, Chen F, Wang X, Jiang Y, Lin S. 2012. Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. Food Science and Technology. 46:164-168.
Zang M, Xu S, Maitland-Toolan K, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren T, Cohen R. 2006. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 55:2180–2191.
Zubia M, Payri C, Deslandes E. 2008. Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). Journal of Applied Phycology. 20:1033–1043. DOI 10.1007/s10811-007-9303-3.
DOI: https://doi.org/10.26877/jiphp.v5i2.8988
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Ilmu Pangan dan Hasil Pertanian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Ilmu Pangan dan Hasil Pertanian by Universitas PGRI Semarang is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.