Perubahan Karakteristik Fisik Biji Kopi Yang Ditambahkan Sorbitol Selama Penyangraian
Abstract
Full Text:
PDFReferences
Anese, M., Nicoli, M. C., Verardo, G., Munari, M., Mirolo, G., & Bortolomeazzi, R. (2014). Effect of vacuum roasting on acrylamide formation and reduction in coffee beans. Food Chemistry, 145, 168–172. https://doi.org/10.1016/j.foodchem.2013.08.047
Bagdonaite, K., Derler, K., & Murkovic, M. (2008). Determination of acrylamide during roasting of coffee. J. Agric. Food Chem., 56, 6081–6086. https://doi.org/10.1021/jf073051p
Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R., & Escher, F. (2008a). Coffee roasting and aroma formation: application of different time - temperature conditions. Journal of Agriculture and Food Chemistry, 56, 5836–5846. https://doi.org/10.1021/jf800327j
Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R., & Escher, F. (2008b). Roasting and aroma formation: effect of initial moisture content and steam treatment. J. Agric. Food Chem. 2008, 56, 5847–5851. https://doi.org/10.1021/jf8003288
Bicho, N. C., Leitão, A. E., Ramalho, J. C., & Lidon, F. C. (2012). Use of colour parameters for roasted coffee assessment. Ciência e Tecnologia de Alimentos, 32(3), 436–442. https://doi.org/http://dx.doi.org/10.1590/S0101-20612012005000068
Bottazzi, D., Farina, S., Milani, M., & Montorsi, L. (2012). A numerical approach for the analysis of the coffee roasting process. Journal of Food Engineering, 112, 243–252. https://doi.org/10.1016/j.jfoodeng.2012.04.009
Bustos-vanegas, J. D., Corrêa, P. C., Martins, M. A., Baptestini, F. M., Campos, R. C., de Oliveira, G. H. H., & Nunes, E. H. M. (2017). Developing predictive models for determining physical properties of co ff ee beans during the roasting process. Industrial Crops & Products. https://doi.org/10.1016/j.indcrop.2017.12.015
Caporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean coffee volatile compounds of arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108(March), 628–640. https://doi.org/10.1016/j.foodres.2018.03.077
Fabbri, A., Cevoli, C., Alessandrini, L., & Romani, S. (2011). Numerical modeling of heat and mass transfer during coffee roasting process. Journal of Food Engineering, 105, 264–269. https://doi.org/10.1016/j.jfoodeng.2011.02.030
Fadai, N. T., Melrose, J., Please, C. P., Schulman, A., & Gorder, R. A. Van. (2017). A heat and mass transfer study of coffee bean roasting. International Journal of Heat and Mass Transfer, 104, 787–799. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.083
Gabriel-guzmán, M., Rivera, V. M., Cocotle-ronzón, Y., García-díaz, S., & Hernandez-martinez, E. (2017). Fractality in coffee bean surface for roasting process. Chaos, Solitons and Fractals, 99, 79–84. https://doi.org/10.1016/j.chaos.2017.03.056
Giacalone, D., Kreuzfeldt, T., Yang, N., Liu, C., Fisk, I., & Münchow, M. (2019). Common roasting defects in coffee: Aroma composition, sensory characterization and consumer perception. Food Quality and Preference, 71(March 2018), 463–474. https://doi.org/10.1016/j.foodqual.2018.03.009
Gloess, A. N., Vietri, A., Wieland, F., Smrke, S., Schönbächler, B., Sánchez, J. A., … Yeretzian, C. (2014). Evidence of different flavour formation dynamics by roasting coffee from different origins: On-line analysis with PTR-ToF-MS. International Journal of Mass Spectrometry, 365–366, 324–337. https://doi.org/10.1016/j.ijms.2014.02.010
Hernández, J. A., Heyd, B., & Trystram, G. (2008). Prediction of brightness and surface area kinetics during coffee roasting. Journal of Food Engineering, 89, 156–163. https://doi.org/10.1016/j.jfoodeng.2008.04.026
Hikmahyuliani. (2018). Pengaruh Penambahan Sorbitol Dan Tingkat Penyangraian Kopi Robusta Terhadap Karakteristik Dan Kemampuan Scavenging Radikal DPPH. Universitas PGRI Semarang.
Jokanović, M. R., Džinić, N. R., Cvetković, B. R., Grujić, S., & Odžaković, B. (2012). Changes of physical properties of coffee beans during roasting. APTEFF, 43, 21–31. https://doi.org/10.2298/APT1243021J
Lee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2016). Modulation of coffee aroma via the fermentation of green coffee beans with Rhizopus oligosporus : II . Effects of different roast levels. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.05.073
Liu, C., Yang, Q., Linforth, R., Fisk, I. D., & Yang, N. (2019). Modifying robusta coffee aroma by green bean chemical pre-treatment. Food Chemistry, 272(July 2018), 251–257. https://doi.org/10.1016/j.foodchem.2018.07.226
Madihah, K. Y. K., Zaibunnisa, A. H., Norashikin, S., Rozita, O., & Misnawi, J. (2012). Optimization of roasting conditions for high-quality robusta coffee. In APCBEE Procedia (Vol. 4, pp. 209–214). Singapore. https://doi.org/10.1016/j.apcbee.2012.11.035
Montavon, P., Mauron, A.-F., & Duruz, E. (2003). Changes in green coffee protein profiles during roasting. J. Agric. Food Chem., 51, 2335–2343. https://doi.org/10.1021/jf020832b
Nunes, F. M., Cruz, A. C. S., & Coimbra, M. A. (2012). Insight into the mechanism of coffee melanoidin formation using modified “in bean” models. Journal of Agricultural and Food Chemistry, 60, 8710–8719. https://doi.org/dx.doi.org/10.1021/jf301527e
Oliveros, N. O., Hernández, J. A., Sierra-Espinosa, F. Z., Guardián-Tapia, R., & Pliego-Solórzano, R. (2017). Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. Journal of Food Engineering, 199, 100–112. https://doi.org/10.1016/j.jfoodeng.2016.12.012
Perrone, D., Donangelo, R., Donangelo, C. M., & Farah, A. (2010). Modeling weight loss and chlorogenic acids content in coffee during roasting. J. Agric. Food Chem., 58, 12238–12243. https://doi.org/10.1021/jf102110u
Uman, E., Colonna-dashwood, M., Colonna-dashwood, L., Perger, M., Klatt, C., Leighton, S., … Hendon, C. H. (2016). The effect of bean origin and temperature on grinding roasted coffee. Scientific Reports, 6(24483), 1–8. https://doi.org/10.1038/srep24483
Wang, N., & Lim, L. (2012). Fourier transform infrared and physicochemical analyses of roasted Coffee. J. Agric. Food Chem., 60, 5446–5453. https://doi.org/dx.doi.org/10.1021/jf300348e
Wang, X., & Lim, L. (2016). Investigation of CO2 precursors in roasted coffee. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.09.095
Wei, F., Furihata, K., Koda, M., Hu, F., Miyakawa, T., & Tanokura, M. (2012). Roasting process of coffee beans as studied by Nuclear Magnetic Resonance: time course of changes in composition. J. Agric. Food Chem., 60, 1005–1012. https://doi.org/dx.doi.org/10.1021/jf205315r
Yang, N., Liu, C., Liu, X., Kreuzfeldt, T., Munchow, M., & Fisk, I. (2016). Determination of volatile marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214. https://doi.org/10.1016/j.foodchem.2016.04.124
DOI: https://doi.org/10.26877/jiphp.v2i2.3218
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Jurnal Ilmu Pangan dan Hasil Pertanian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Ilmu Pangan dan Hasil Pertanian by Universitas PGRI Semarang is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.